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6.001 Notes: Section 1.1 

Slide 1.1.1 
This first thing we need to do is discuss the focus of 6.001. 
What is this course all about? This seems quite obvious -- this 
is a course about computer science. But we are going to claim 
in a rather strange way that this is not really true. 

Slide 1.1.2 
First of all, it is not really about science. It is really much more 
about engineering or art than it is about science. 

Slide 1.1.3 
...and it is not really about computers. Now that definitely 
sounds strange! But let me tell you why I claim it is not really 
about computers. I claim it is not really about computers in the 
same way that physics is not really just about particle 
accelerators, or biology is not really just about microscopes, or 
geometry is not really about surveying instruments. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 1.1.4 
In fact, geometry is a good analogy to use here. It has also a 
terrible name, which comes from two words: GHIA or earth, 
and METRA or measurement. And to the ancient Egyptians, 
that is exactly what geometry was -- instruments for measuring 
the earth, or surveying. Thousands of years ago, the Nile 
annually flooded, and eventually retreated, wiping out most of 
the identifying landmarks. It also deposited rich soil in its wake, 
making the land that it flooded very valuable, but also very hard 
to keep track of. As a consequence, the Egyptian priesthood had 
to arbitrate the restoration of land boundaries after the annual 
flooding. Since there were no landmarks, they needed a better 
way of determining boundaries, and they invented geometry, or 

earth measuring. Hence, to the Egyptians, geometry was surveying -- and about surveying instruments. This is a 
common effect. When a field is just getting started, it’s easy to confuse the essence of the field with its tools, 
because we usually understand the tools much less well in the infancy of an area. In hindsight, we realize that the 
important essence of what the Egyptians did was to formalize the notions of space and time which later led to 
axiomatic methods for dealing with declarative, or What Is kinds of knowledge. --- So geometry not really about 
measuring devices, but rather about declarative knowledge. 

Slide 1.1.5 
So geometry is not really about surveying, it is actually 
fundamentally about axioms for dealing with a particular kind 
of knowledge, known as Declarative, or "what is true" 
knowledge. 

Slide 1.1.6 
By analogy to geometry, Computer Science is not really about 
computers -- it is not about the tool. It is actually about the kind 
of knowledge that computer science makes available to us. 
What we are going to see in this course is that computer science 
is dealing with a different kind of knowledge -- Imperative or 
"how to" knowledge. It is trying to capture the notion of a 
process that causes information to evolve from one state to 
another, and we want to see how we can uses methods to 
capture that knowledge. 
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Slide 1.1.7 
First, what is declarative knowledge? It is knowledge that talks 
about what is true. It makes statements of fact that one can use 
to try to reason about things. For example, here is a statement 
of truth about square roots. It provides a definition of a square 
root. As a consequence if someone were to hand you a possible 
value for the square root of some x, you could check it by using 
this definition. But it doesn't tell you anything about how to 
find the value of square root of x. 

Slide 1.1.8 
On the other hand, imperative knowledge talks about "how to" 
knowledge. It tends to describe a specific sequence of steps that 
characterize the evolution of a process by which one can 
deduce information, transforming one set of facts into a new 
set. 

Slide 1.1.9 
So here for example is a very old algorithm, that is, a specific 
piece of imperative knowledge, for find an approximation to the 
square root of some number, x. 

Slide 1.1.10 
Okay -- let's test it out. Suppose we want to find the square root 
of 2. We will see how this sequence of steps describes a process 
for finding the square root of 2. 
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Slide 1.1.11 
So here we go. We'll create a little chart to keep track of the 
algorithm. We want to find the square root of 2, so x = 2. And 
we start with some guess, say G = 1. Our algorithm tells us how 
to improve this guess, by averaging g and x divided by g. 

Slide 1.1.12 
So we compute x/G. And then the algorithm says to get a new 
guess, G, by averaging the old guess and this ratio -- giving us a 
better guess for the square root of 2. 

Slide 1.1.13 
If we decide we are not close enough (i.e. square our current 
guess is too far away from 2) we can continue. We take our 
current value for the guess, and compute x divided by that 
value. Then we get a new guess, by averaging our current guess 
and this new ratio. And we continue. 

Slide 1.1.14 
Eventually we get a value for the guess that is close enough, 

and we stop. Notice how this "algorithm" describes a sequence 

of steps to follow to deduce some new information from a set of 

facts. It tells us "how to" do something. 

Compare this with the case of the declarative or "what is" 

version. It simply told us how to recognize a square root if we 

saw one, but nothing about how to find one. 
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Slide 1.1.15 
So what we have seen is that imperative and declarative 
knowledge are very different. One captures statements of fact; 
the other captures methods for deducing information. It is easy 
to see why the latter is more interesting. For example, one could 
in principle imagine trying to collect a giant listing of all 
possible square roots, and then simply looking up a square root 
when you need it. Much more convenient is to capture the 
process of deducing a specific square root as needed. Thus, we 
are primarily interested in "how to" knowledge -- we want to be 
able to give the computer instructions to compute a value, and 
this means we need a way of capturing the "how to" knowledge. 
In particular, we want to describe a series of specific, 
mechanical steps to be followed in order to deduce a particular value associated with some problem, using a 
predefined set of operations. This "recipe" for describing "how to" knowledge we call a procedure. 

Slide 1.1.16 
When we want to get the computer to actually compute a value, 
that is, use the "how to" knowledge to find the value associated 
with a particular instantiation of the problem, we will evaluate 
an expression that applies that procedure to some values. The 
actual sequence of steps within the computer that cause the 
"how to" knowledge to evolve is called a process. Much of our 
focus during the term will be in understanding how to control 
different kinds of processes by describing them with 
procedures. 

Slide 1.1.17 
Now we want to create tools that make it easy for us to capture 
procedures and describe processes, and for that we will need a 
language. Whatever language we choose to use to describe 
computational processes, it must have several components. 
First, it will have a vocabulary -- a set of words on which we 
build our description. These will be the basic elements of 
computation, the fundamental representations of information 
and the fundamental procedures that we use to describe all 
other procedures. 
Second, it will have a set of rules for legally connecting 
elements together -- that is, how to build more complex parts of 
a procedure out of more basic ones. This will be very similar to 
the syntax of a natural language. 
Third, it will have a set of rules for deducing the meaning associated with elements of the description. This will be 
very similar to the semantics of a natural language. 
And finally, we will need standard ways of combining expressions in our language together into a sequence of 
steps that actually describe the process of computation. 
We will see is that our language for describing procedures will have many of the same features as natural 
languages, and that we will build methods for constructing more complex procedures out simpler pieces in natural 
ways. 
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Slide 1.1.18 
One of the things we will see is that it does not take long to 
describe the rules for connecting elements together, nor to 
describe the rules for determining meanings associated with 
expressions in our language of procedures. 
Our real goal is to use this language of procedures and 
processes to help us control complexity in large systems -- that 
is, to use the language and its elements to design particular 
procedures aimed at solving a specific problem. We will spend 
much of the term doing this, both from scratch, and by looking 
at examples from existing procedures. 

Slide 1.1.19 
In order to capture imperative knowledge, we are going to 
create languages that describe such processes. This means we 
will need to specify a set of primitive elements -- simple data 
and simple procedures, out of which we will capture complex 
procedures. We will also need a set of rules for combining 
primitive things into more complex structures. And once we 
have those complex structures, we will want to be able to 
abstract them -- give them name so that we can treat them as 
primitives. 

Slide 1.1.20 
We will see, as we go through the term, that this cycle of 
creating complex processes, then suppressing the details by 
abstracting them into black box units, is a powerful tool for 
designing, maintaining and extending computational systems. 
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Slide 1.1.21 
Indeed, that is precisely the goal of understanding computation. 
How can we create methodologies that make it easy to describe 
complex processes without getting lost in the details? Clearly a 
well-designed methodology for thinking about computation 
should enable us to build systems that robustly and efficiently 
compute results without error, but also should enable us to 
easily add new capabilities to the system. Thus, our goal is to 
gain experience in thinking about computation, independent of 
language details and specifics, in order to control complexity in 
large, intricate systems. 

Slide 1.1.22 
Thus our goal in 6.001 is to use the ideas of "how to" 
knowledge, the ideas of describing processes through 
procedures, to control complexity of large systems. We don't 
just want to write small programs, we want to understand how 
the ideas of procedures and their pieces can be used to construct 
large systems in well-engineered ways. 
This means we need tools for handling complex systems, and 
we are going to see a range of such tools, built on the language 
of procedures. 

Slide 1.1.23 
The first tool we will use for controlling complexity is the idea 
of an abstraction, a black box, if you like. Take the method we 
just described for computing square roots. While it is useful to 
know how to do this, one can easily imaging problems in which 
one simply wants the square root, and one doesn't care how it is 
derived. Imagine creating a black box that captures the idea of 
square root -- one simply puts values in the correct slot, and out 
come appropriate square roots. This idea of isolating the use of 
a procedure from its actual implementation or mechanism is a 
central idea that we will use frequently in controlling 
complexity of large systems. 
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Slide 1.1.24 
Not only are black boxes a useful tool for isolating components 
of a system, they also provide the basis for connecting things 
together. A key issue is providing methods for connecting 
together basic units into components that themselves can be 
treated as basic units. Thus, we will spend a lot of time talking 
about conventional interfaces -- standard ways of 
interconnecting simpler pieces. 
This is much like hooking up parts of a stereo system. One has 
standard interfaces by which components can be intertwined, 
and this can be done without worrying about the internal 
aspects of the components. Similarly in programming, we will 
describe conventions for interfacing simpler components to 

create new elements that can further be connected together. 

Slide 1.1.25 
In fact, here are three particular kinds of conventional interfaces 
that we will explore in some detail during the term. 

Slide 1.1.26 
We will see as we go through the term that ideas of capturing 
procedures in black box abstractions, then gluing them together 
through conventional interfaces will give us considerable power 
in creating computational machinery. At some point, however, 
even these tools will not be sufficient for some problems. At 
this stage, we will generalize these ideas, to create our own 
languages specifically oriented at some problem domain. This 
idea of meta-linguistic abstraction will provide us with a 
powerful tool for designing procedures to capture processes, 
especially as we focus on the idea of what it means to evaluate 
an expression in a specifically designed language. 
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Slide 1.1.27 
And as a consequence we will see several different mechanisms 
for creating new languages -- ones designed for particular 
problems, one designed to interface between higher level 
languages and the hardware that actually does the work, and 
ones that get to the heart of any computer language, by focusing 
on the essence of computation -- evaluation of expressions. 

6.001 Notes: Section 1.2 

Slide 1.2.1 
Our goal in this course is to explore computation, especially 
how thinking about computation can serve as a tool for 
understanding and controlling complexity in large systems. Of 
particular interest are systems in which information is inferred 
from some set of initial data, whether that is finding other 
information on the web, or computing an answer to a scientific 
problem, or deciding what control signals to use to guide a 
mechanical system. 
For such systems to work, they need some process by which 
such inference takes place, and our goal is to be able to reason 
about that process. In using computation as a metaphor to 
understand complex problem solving, we really want to do two 
things. We want to capture descriptions of computational processes. And we want to use the notion of a 
computational process as an abstraction on which we can build solutions to other complex problems. 
We will see that to describe processes, we need a language appropriate for capturing the essential elements of 
processes. This means we will need fundamental primitives (or atomic elements of the language), means of 
combination (ways of constructing more complex things from simpler ones) and means of abstraction (ways of 
treating complex things as primitives so that we can continue this process). 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 1.2.2 
So let's begin our discussion of a language for describing 
computational processes. To do this, we really need to provide 
a definition of, or at least some intuition behind, the idea of a 
computational process. In simple terms, a computational 
process is a precise sequence of steps by which information (in 
the form of numbers, symbols, or other simple data elements) is 
used to infer new information. This could be a numerical 
computation (e.g. a set of steps to compute a square root, as we 
saw earlier), or it could be a symbolic computation (finding a 
piece of information on the Web), or some other inference 
based on information. 
While the computational process refers to the actual evolution 

of information in the computation, we also want to be able to capture a description of the actual steps in the 
computation, and we refer to this recipe as a computational procedure: a description of the steps in the 
computation. Thus, our language will allow us to describe “recipes” and to use these descriptions on particular 
instances of problems, that is, will “bake solutions” using the recipes. 

Slide 1.2.3 
First, we need to understand how we are going to representation 
information, which we will use as the basis for our 
computational processes. To do this, we need to decide on 
representations for numeric values and for symbolic ones. 
Let’s start with numbers. 
To represent a number, we start with the most atomic element. 
Because ultimately we will represent information internally 
inside the computer, we will use electronic signals to do so. 
These are most conveniently represented by using a high 
voltage or current or a low voltage or current to represent 
fundamental values. Thus, the most primitive element in 
representing a value is a binary variable, which takes on one of 
two values: a zero or a one. This variable represents one bit, or binary digit, or information. 
Of course, we need to group these bits together to represent other numbers, which we do typically in groupings of 8 
bits (a byte) or in groupings of 16, 32, or 48 bits (a word). 
Once we have sequences of bits, we can use them not only to represent other numbers, but we can envision 
encodings, in which numbers or bit sequences are used to represent characters. And characters can further be 
group together to represent symbolic words. Though we won’t worry about it much in this course, there are 
standard encoding schemes for using bit sequences to represent characters as well as numbers. Typically the first 
few bits in a sequence are used as a tag to distinguish a number from an encoding for a character. 
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Slide 1.2.4 
Now let’s spend a minute thinking about binary representations 
for numbers and operations to manipulate them. We said we 
could use a sequence of bits to represent a number, for example, 
a positive integer. We can identify each place in the sequence 
(by convention the lowest order bit is at the right). And we can 
weight each bit by a different power of 2, so that we are able to 
represent all possible integers (up to some limit based on the 
number of bits we are using). Mathematically, we can capture 
this in the equation shown on the slide, and this gives us a way 
of representing unsigned integers. 

Slide 1.2.5 
Now what about simple arithmetic operations on binary integer 
representations? Well, the rules for addition are just what you 
would expect. And we can do standard addition by simply 
carrying bits, just as you would in decimal arithmetic. You can 
see this by checking the binary addition at the bottom left, and 
confirming that conversion of this result to digital form gives 
you what is shown on the right. 
There are similar rules for binary multiplication. 

Slide 1.2.6 
One can build on this to create signed integers (using one bit, 
typically the highest order bit) to represent the sign (positive or 
negative). And can extend this to represent real (or scientific) 
numbers, and to represent encodings for characters (using some 
high order bits to denote a character, and then using some 
standard encoding to relate bit sequences to characters). 
The problem is that this is clearly too low level!  Imagine trying 
to write a procedure to compute square roots, when all you can 
think about are operations on individual bits. This quickly gets 
bogged down in details, and is generally mind-numbingly 
boring. So we need to incorporate a level of abstraction. We 

are going to assume that we are given a set of primitive objects, 
and a set of basic operations, and we are going to build on top of that level of abstraction to deal with higher-level 
languages for computation. 
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Slide 1.2.7 
So we will assume that our language provides a built-in set of 
data structures: numbers, characters, and Boolean values (true 
or false). And we will assume that our language provides a 
built-in set of primitive operations for manipulating numbers, 
characters and Booleans. Our goal is to build on top of this 
level of abstraction to capture the essence of a computational 
process. 

Slide 1.2.8 
Thus, we are going to first describe our language for capturing 
computational processes, and then look at using it to solve 
complex problems. In this course the language we are going to 
use is called Scheme - a variant of a language called LISP, both 
of which were invented here at MIT some time ago. 
Everything we write in Scheme will be composed of a set of 
expressions, and there is a simple set of rules that tell us how to 
create legal expressions in this language. These rules are similar 
to the syntax of a natural language, like English. They tell us 
the simplest legal expressions, and give us rules for 
constructing more complex legal expressions from simpler 

pieces. 
Similar, almost every expression in Scheme has a meaning or value associated with it. The semantics of the 
language will tell us how to deduce the meaning associated with each expression - or, if you like, how to determine 
the value associated with a particular computation. In Scheme, with only a few exceptions, we will see that 
evaluating every expression results in a value being returned as the associated meaning. 
As we build up our vocabulary in Scheme, we will find rules of syntax and semantics associated with each new 
type of expression. 
Finally, we will also see that every value in Scheme has a type associated with it. Some of these types are simple; 
others are more complex. Types basically define a taxonomy of expressions, and relate legal ways in which those 
expressions can be combined and manipulated. We will see that reasoning about the types of expressions will be 
very valuable when we reason about capturing patterns of computation in procedures. 

Slide 1.2.9 
As we build up our language, looking at the syntax and 
semantics of expressions in that language, we will also see that 
these expressions very nicely break up into three different 
components. We have primitives - our most basic atomic units, 
on top of which everything else is constructed. We have ways 
of gluing things together - our means of combination - how to 
combine smaller pieces to get bigger constructs. And finally we 
have a means of abstraction - our way of taking bigger pieces, 
then treating them as primitives so that they can be combined 
into bigger constructs, while burying or suppressing the internal 
details of the pieces. 
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Slide 1.2.10 
Let’s start with the primitives -- the basic elements. These are 
the simplest elements on top of which we will build all our 
other computational constructs. 
The simplest of these are the self-evaluating expressions, that 
is, things whose value is the object or expression itself. These 
include numbers, strings and Booleans. 
Numbers are obvious, but include integers, real numbers, and 
scientific notation numbers. 
Strings are sequences of characters, including numbers and 
special characters, all delimited by double quotes. These 
represent symbolic, as opposed to numeric, data. 
Booleans represent the logical values of true and false. These 

represent logical, as opposed to symbolic or numeric, data. 

Slide 1.2.11 
Of course we want more than just primitive objects, we need 
ways of manipulating those objects. For example, for numbers 
we have a set of built-in, or predefined, procedures. Thus, the 
symbol + is a name for the primitive procedure or operation of 
addition, and similarly for other arithmetic operations, 
including comparison operations. 
Strings have an associated set of operations, for comparing 
strings or extracting parts of strings. 
And Booleans have an associated set of logical operations. 
Think of these as abstractions: they are machinery that performs 
the operations described by a set of known rules. 

Slide 1.2.12 
Before we actually show the use of these primitive, or built-in, 
procedures, we pause to stress that these names are themselves 
expressions. By our earlier discussion, this suggests that this 
expression, +, should have a value. This sounds like a strange 
thing for many computer languages, but in Scheme we can ask 
for the value associated with a symbol or name. In this case, the 
value or meaning associated with this built-in symbol is the 
actual procedure, the internal mechanism if you like, for 
performing addition. In fact our rule for evaluating the 
expression, +, is to treat it as a symbol, and look up the value 
associated with it in a big table somewhere. Shortly we will see 

how that table is created. 
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Slide 1.2.13 
Given numbers and procedures, we want to use them together. 
Ideally, we should be able to apply operations like * or + to 
numbers to get new values. This leads to means of combination -
our way of constructing larger expressions out of simpler ones. 
In Scheme our standard means of combination consists of an 
expression that will apply a procedure to a set of arguments in 
order to create a new value, and it has a very particular form .... 

Slide 1.2.14 
... consisting of an open parenthesis ... 

Slide 1.2.15 
... followed by an expression whose value, using the rules we 
are describing, turns out to be a procedure ... 

Slide 1.2.16 
... followed by some number of other expressions, whose values 
are obtained using these same rules ... 
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Slide 1.2.17 
... followed by a matching close parenthesis. This form always 
holds for a combination. 

Slide 1.2.18 
So there is the syntax for a combination - an open parenthesis, 

an expression whose value is a procedure, some other set of 

values, and a close parenthesis. 

What about the semantics of a combination? To evaluate a 

combination, we evaluate all the sub-expressions, in any order, 

using the rules we are developing. We then apply the value of 

the first expression to the values of the other expressions. 

What does apply mean? For simple built-in procedures, it just 

means take the underlying hardware implementation and do the 

appropriate thing to the values, e.g. add them, multiply them, 

etc. 


Slide 1.2.19 
This idea of combinations can be nested arbitrarily. We can use 
a combination whose parts are themselves combinations, so 
long as the resulting value can legally be used in that spot. To 
evaluate combinations of arbitrary depth, we just recursively 
apply these rules, first getting the values of the sub-expressions, 
then applying the procedure to the arguments, and further 
reducing the expression. 
So, for example, to get the value of the first expression, we get 
the values of + (by lookup), and 4 because it is self-evaluating. 
Because the middle subexpression is itself a combination, we 
apply the same rules to this get the value 6, before completing 
the computation. 

6.001 Notes: Section 1.3 
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Slide 1.3.1 
So far we have basic primitives -- numbers, and simple built-in 
procedures, and we have means of combination -- ways of 
combining all those pieces together to get more complicated 
expressions. But at this stage all we can do is write out long, 
complicated arithmetic expressions. We have no way of 
abstracting expressions. We would like to be able to give some 
expression a name, so that we could just refer to that name (as 
an abstraction) and not have to write out the complete 
expression each time we want to use it. 

Slide 1.3.2 
In Scheme, our standard way for doing that is to use a particular 
expression, called a define. It has a specific form, an open 
parenthesis (as before), followed by the keyword define, 
followed by an expression that will serve as a name (typically 
some sequence of letters and other characters), followed by a 
expression whose value will be associated with that name, 
followed by a close parenthesis. 

Slide 1.3.3 
We say that this expression is a special form, and this means it 
does not follow the normal rules of evaluation for a 
combination. We can see why we want that here. If we applied 
the normal rules for a combination, we would get the value of 
the expression score and the value of 23, then apply the define 
procedure. But the whole point of this expression is to associate 
a value with score so we can't possibly use the normal rules to 
evaluate score. 
So instead, we will use a different rule to evaluate this special 
form. In particular, we just evaluate the last sub-expression, 
then take the name without evaluating it (score in this case) and 
pair that name together with the deduced value in a special 
structure we call an environment. For now, think of this as a big table into which pairings of names and values can 
be made, using this special define expression. 
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Slide 1.3.4 
Because our goal is to associate a name with a value, we don't 
actually care what value is returned by the define expression, 
and in most Scheme implementations we leave that as 
unspecified. 
Thus, our means of abstraction gives us a way of associated a 
name with an expression, allowing us to use that name in place 
of the actual expression. 

Slide 1.3.5 
Once we have the ability to give names to values, we also need 
the ability to get the value back out. And that's easy. To get the 
value of a name in Scheme, we simply lookup the pairing of the 
name in that table we created. Thus, if we evaluate the 
expression score we simply lookup the association we made 
when we defined score in that table, in this case, 23, and return 
that value. 
Notice that this is exactly what we did with built-in primitives. 
If we give the name + to Scheme, it looks up the association of 
that symbol, which in this case is the built in addition 
procedure, and that procedure is actually returned as the value... 

Slide 1.3.6 
... and of course now we can use names in any place we would 
have used it's associated expression. 
In the example shown here, we can define total to have the 
value of the subexpression, and by our previous rules, we know 
that this reduces to 25. Now if we evaluate the last expression, 
our rules say to first evaluate the subexpressions. The symbol * 
is easy, as is the number 100. To get the value of the last sub-
expression, we recursively apply our rules, in this case looking 
up the value of score, and the value of total, then applying the 
value of / to the result, and finally, applying the multiplication 
operator to the whole thing. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 1.3.7 
Notice that this creates a very nice loop in our system. We can 
now create complex expressions, give them a name, and then 
by using that name, treat the whole expression as if it were a 
primitive. We can refer to that expression by name, and thus 
can write new complex expressions involving those names, give 
the resulting expression a name, and treat it is a new primitive, 
and so on. In this way, we can bury complexity behind the 
names, and create new primitive elements in our language. 

Slide 1.3.8 
So here is a summary of the rules of evaluation we have seen so 
far. 

Slide 1.3.9 
Because these ideas of evaluation are important, let's take 
another look at what happens when an expression is evaluated. 
Remember that our goal is to capture computation in 
expressions, and use those expressions to compute values. We 
have been describing both the forms of expressions, and how 
one deduces values of expressions. When we consider the 
second stage, we can separate out two different worlds, or two 
different ways of looking at what happens during evaluation. 
One world is the visible world. This is what we see when we 
type an expression at the computer and ask it to perform 
evaluation, leading to some printed result. Below that world is 
the execution world. This is what happens within the computer (we'll see a lot more details about this later in the 
term), including both how objects are represented and how the actual mechanism of evaluation takes place. We 
want to see how these two worlds interact to incorporate the rules of semantics for determining values of 
expressions. 
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Slide 1.3.10 
When an expression is entered into the computer from our 
visible world, it is first processed by a mechanism called a 
reader, which converts this expression into an internal form 
appropriate for the computer. 

Slide 1.3.11 
That form is then passed to a process called an evaluator. This 
encapsulates our rules for evaluation, and reduces the 
expression to its value. 

Slide 1.3.12 
Note that this may involve a recursive application of the 
evaluation rules, if the expression is a compound one, as we 
saw with our nested arithmetic expressions. 

Slide 1.3.13 
And the result is then passed to a print process, which converts 
it into a human readable form, and outputs it onto the screen. 
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Suppose, for example, we type the expression 23 into the 
computer, and ask for its value. The computer basically 
recognizes what type of expression this is (self-evaluating in 
this case) and therefore applies the rule for self-evaluating 
expressions. This causes the expression to be converted into an 
internal representation of itself, in this case some binary 
representation of the same number. For self-evaluating 
expressions, the value is the expression itself, so the computer 
simply returns that value to the print procedure, which prints 
the result on the screen for us to see. 

Slide 1.3.15 
A second kind of primitive object is a name for something, 
typically created by evaluating a define expression. Remember 
that such a define created a pairing of a name and a value in a 
structure we call an environment. When we ask the computer to 
evaluate an expression such as pi, it recognizes the type of 
expression (a name), and applies the name rule. This causes the 
computer internally to find the pairing or association of that 
name in the environment, and to return that value as the value 
of the expression. This gets handed to the print procedure, 
which prints the result on the screen. Note that the internal 
representation of the value may be different from what is 
printed out for us to see. 

Slide 1.3.16 
What about special forms? Well, the first one we saw was a 
define. Here the rules are different. We first apply our 
evaluation rules to the second sub-expression of the define. 
Once we have determined that value, we then take the first 
subexpression (without evaluation) and create a pairing of that 
name and the computed value in a structure called an 
environment. 
Since the goal of the define expression is to create this pairing, 
we don't really care about a value of the define expression 
itself. It is just used for the side effect of creating the pairing. 
Thus, typically we leave the value returned by a define 

expression as unspecified. 
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So let's see what happens in our two worlds view. Suppose we 
type in a define expression and evaluate it. What happens? 

Slide 1.3.18 
Here's an example. The evaluator first identifies the type of 
expression, in this case by recognizing the key word define at 
the beginning of the compound expression. Thus it applies the 
rule we just described. 

Slide 1.3.19 
As we saw, the evaluator now takes the second sub-expression 
and evaluates it, using the same rules. In this case, we have a 
number, so the self-evaluation rule is applied. That value is then 
paired with the name, or first sub-expression, gluing these two 
things together in a table somewhere (we don't worry about the 
details of the table or environment for now, we'll discuss that in 
detail later in the term). As noted, the actual value of the define 
expression is not specified, and in many Scheme 
implementations we use a particular, "undefined", value. 

Slide 1.3.20 
As a consequence, the value that gets returned back up to the 
visible world may vary in different implementations of Scheme. 
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Most versions of Scheme will show us some information about 
what binding was just created, but in general, we will not rely 
on this, since it does vary with implementations of Scheme. 

Slide 1.3.22 
These rules hold for any expression. If we just have a simple 
combination involving a built-in arithmetic procedure, we know 
that we get the values of the other sub-expressions (using the 
self-evaluation rule), then apply the value associated with the 
symbol + to those values, thus executing an addition operation. 

Slide 1.3.23 
But suppose we do something strange, like this. Our rule for 
defines says that we get the value associated with + and bind it 
together with the name fred in our environment. Remember 
that + is just a name, so we use our name rule to find its value, 
which is in fact the actual internal procedure for addition. 

Slide 1.3.24 
Now, let's apply fred to some arguments. Notice that this just 
appears to do addition. 
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Is that really right? 

Yes it is, and let's think about why. 


Slide 1.3.26 
Well, our rules really explain this. The define expression says 
to pair the name fred with the value of +. Note that + is just a 
name, it happens to be one that was created when Scheme was 
started. Its value, we saw, is a procedure, the internal procedure 
for addition. Hence, the define expression creates a binding for 
fred to addition. 
Thus, when we evaluate the combination, our rule says to get 
the values of the sub-expressions, and hence the name fred is 
evaluated using the name rule, to get the addition procedure. 
This is then applied to the values of the numbers to generate the 
displayed result. 

Slide 1.3.27 
As an example, if I ask for the value associated with one of 
these built-in names, my rules explain what happens. Since this 
is a name, its value is looked up in the environment. In this 
case, that value is some internal representation of the procedure 
for multiplication, for example, a pointer to the part of the 
internal arithmetic unit that does multiplication. That value is 
returned as the value of this expression, and the print procedure 
then displays the result, showing some representation of where 
the procedure lies within the machine. The main issue is to see 
that this symbol has a value associated with it, in this case a 
primitive procedure. 
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Thus what we have seen so far is ways to utilize primitive data 
and procedures, ways to create combinations, and ways to give 
names to things. In the next section, we will turn to the idea of 
capturing common patterns in procedures. 
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