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Two-Component Phase Equilibria 
Goal: Understand & predict effects of mixing of substances on vapor 

pressure, boiling point, freezing point, etc.  
 
Binary liquid-gas mixtures (non-reacting): 

 
Total # of variables: 4 
  (T, p, xA, yA) 
 
Constraints due to coexistence: 2 

μA( ) = μA(g) 
μB( ) = μB(g) 

 
# independent variables  F = 4 – 2 = 2 
Only 2! e.g. knowing (T,p) uniquely determines the compositions in the 
liquid & gas phases 
 
Generalization: Gibbs phase rule gives # independent variables 
needed to describe a multi-component system where different 
phases coexist in equilibrium 
      F = C – P + 2 
 
F ≡ # degrees of freedom (independent variables) 
C ≡ # components 
P ≡ # phases 
 
How do we get this?  
 
Suppose a system has C components and P phases.  
What are all the variables?  
First, T and p. 
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Then in each phase “α”, each component is specified by its mole 
fraction, with the constraint that  α

=

=∑ ( )

1
1

C

i
i

x . 

So the composition of each phase is specified by (C – 1) variables. 
With P phases, we have P(C – 1) variables.  
Including T and p, the total # variables is P(C – 1) + 2. 
 
Now add constraints due to phase equilibria:  
Chemical potential of each component is the same in all the phases.  
e.g. for component “i”, μ μ μ= =…(1) (2) ( )P

i i i  ⇒  P – 1 constraints 
For C components, it’s C(P – 1) constraints altogether  
 
So total # independent variables is F = P(C – 1) + 2 - C(P – 1) 
F = C – P + 2 Gibbs phase rule 
 
For 1-component system: F = 3 – P 
P = 1  ⇒ F = 2    Can vary freely in (T,p) plane 
P = 2  ⇒ F = 1    Can vary along coexistence curve T(p) 
P = 3  ⇒ F = 0    No free variables at triple point (Tt,pt) 
P = 4  ⇒ Impossible! Can’t have 4 phases in equilibrium 
 
Raoult’s Law and Ideal Solutions 
 
“A” is a volatile solvent (e.g. water) 
“B” is a nonvolatile solute (e.g. antifreeze) 
  
 
 
 
 
 
 
 pA* ≡ vapor pressure of pure A at temperature T 
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Raoult’s Law assumes a linear dependence 
Solvent and solute do not interact, like in mixture of ideal gases   
 
   pA = xApA*  = (1-xB)pA* 
 
Application: Vapor pressure lowering (our first “colligative” property) 

 
pA* - pA = pA* - xApA* = (1 - xA)pA* = xBpA* > 0 
 
So  pA < pA*  
Vapor pressure is lowered in the mixture 

 
 
Now let’s consider both A and B volatile
 
 
 
 
 
 
 
 
   pA = xApA*    and    pB = xBpB* 
 
   p = pA + pB = xApA* + xBpB* 
 
    (xA + xB = 1) 
 
“Ideal” solutions ≡ both components obey Raoult’s Law  
 
The diagram above shows the composition of the liquid phase 
It does not provide information about the gas phase composition 
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The gas phase is described by yA or yB. If T and xA are given, then yA 
and yB are fixed (by Gibbs phase rule). That is, if T and the 
composition of the liquid phase are known, then the composition of 
the gas phase is determined.  
 
So how do we get yA? 
 
pA = yAp  (Dalton’s Law) 
 
pA = xApA*  and  pB = xBpB* = (1 –xA)pB* (Raoult’s Law) 
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Inverting this expression  ⇒  ( )
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This is summarized in the following diagram: 
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Combining both diagrams into one plot: 
 
 
 
 
 
 
 
 
 
This allows us to see the compositions of both liquid and gas phases 
 
If we know the composition of one phase at a given T, we can 
determined the composition of the other phase from the diagram 


