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Key Concepts for Exam 3 

Material covered: Lectures 18 – 28, phase changes, phase equilibria, statistical
      mechanics.  

One Component Phase Equilibrium 

•	 Understand what a first order phase transition is (As one changes T holding p 

constant or changes p holding T constant, there is a discontinuity in the properties 

of the system.  e.g. density, heat capacity, molar entropy, molar enthalpy, etc.) 

•	 Understand how chemical potential determines phase equilibrium. (Generally, a 

substance will be in the phase that has the lower chemical potential, if µ
� < µs 

then the system will be in the liquid state.  If the chemical potentials of the two 

phases are equal µ
� = µs , then phase equilibrium will occur.) 

•	 Look through the lecture notes (lecture 18) and refresh on how we made the 

µ vs. T  plot at constant pressure, and how plotting this for many different 

pressures enabled us to construct the standard T vs. p phase diagram. 

•	 For the solid liquid line, understand how the slope is determined by the relative 

density of the solid and liquid. 

⎛ dp ⎞ ΔS ΔH 
•	 Refresh on the derivation of the Clapeyron equation, ⎜ ⎟ = = 

⎝ dT ⎠coexist ΔV TΔV 

(note that no approximations are made in this derivation), and understand how 

this determines the slope of solid-gas and liquid-gas phase lines. 
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d ln p ΔH 
•	 Know the Claussius- Clapeyron equation: = 

2 
, where ΔH is the 

dT RT 

enthalpy of sublimation or vaporization.  Follow the derivation and understand the 

approximations/assumptions used to get from the Clapeyron to the Claussius-

Clapeyron equation ( ΔV
sub 

or ΔV
vap 

= V
gas 

 and the gas is ideal). 

• Using the assumption that ΔH is independent of temperature, know how to get to 

the integrated form of the Claussius- Clapeyron equation:


⎛ p2 
⎞ ΔH ⎛ 1 1 ⎞


ln ⎜ ⎟ = − ⎜ − ⎟

⎝ p1 ⎠ R ⎝ T2 T1 ⎠


•	 Understand the effects of adding an inert gas over a liquid, and how entropy of 

mixing increases the vapor pressure.  Understand why the partial pressure of a 

liquid compound increases as we add inert gas at constant volume. 

Two Component Phase Equilibrium 

•	 Review the derivation of Gibb’s phase rule: F = C – P + 2, with F the number of 

degrees of freedom or independent variables, C the number of components, and P 

the number of phases.  Be able to modify the phase rule for situations were there 

are extra degrees of freedom (like the ferroelectric phases and the presence of an 

electric field) or where extra constraints are applied (like the chemical equilibrium 

in solution). 

•	 Understand the definition of an “ideal” solution (that energetically speaking, 

interactions between like molecules is identical to interactions between different 

molecules) and how this implies that entropy is the driving force behind mixing. 

•	 Know the laws we used to derive the behavior of “ideal” solutions 

- Dalton’s Law: p
A 

= py 
A 
, p

B 
= py 

B 

(with pA the partial pressure of component A in the gas, PB the partial pressure 

of B, p the total pressure, and yA and yB the mole fractions in the gas of 

components A and B respectively.) 

* * - Raoult’s Law: p
A 

= p
A
x

A 
, p

B 
= p

B
x

B 

* * (with pA and pB the partial pressures of A and B, p
A 

 and p
B 

 the vapor 

pressure of pure A and B respectively, and xA and xB the mole fractions in the 

liquid of A and B.) 

- Definition of mole fractions: x
A 

+ x
B 

= 1, y
A 

+ y
B 

= 1 

•	 Understand how these laws were used to come up with expressions for the dew 

line and the bubble line.  If we start entirely in the gas phase and increase the 

pressure of a two-component system, the dew line corresponds to the pressure (for 

a particular mole fraction) at which the first drops of liquid form.  If we start 
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entirely in the liquid phase, the bubble line corresponds the pressure at which the 

first bubbles of gas form as we decrease the pressure. 

* * 

Dew line: p = 
* 

p 
* 

A
p

B 

*

p

B 
+ ( p

A 
− p

B 
) y

B


* * * Bubble line: p = ( p
B 

− p
A 
)x

B 
+ p

A 

•	 Be comfortable with the plot (remembering there are actually two plots here with 

different x-axes): 

and be able to figure out the mole fractions of A and B in the liquid and gas phase 

for any pressure, given initial mole fractions.  Know what happens if you start 

completely in the gas or liquid phase and increase or decrease the pressure, 

respectively. 

• Know how a non-ideal solution differs from an ideal solution, and be able to 

apply Henry’s Law in the dilute solution limit, p
B 

= K
B
x

B 
, with KB the Henry’s 

Law constant, an experimentally determined value that is dependent on 

solute/solvent concentration and temperature. 

• Know the colligative properties (again applicable in the dilute solute limit) on 

page 1 of lecture 23.  Be comfortable using the concentration expressed as 

molality (moles solute/kg solvent) and the molar mass given in kilograms. 

Statistical Mechanics 

• Be comfortable with Boltzmann factors and what they tell us about the relative 

P(ε ) e 
−εi / kT 

probabilities of a molecule being in two states: i = , and how we can 
P(ε 

j 
) e 

−ε / kT j 

use the (obvious) fact that the particle has a probability of 1 of being in some state 

e 
−εi / kT


to write: P(ε i ) = 
∑e 

−ε / kT 
. 


j 

j 
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•	 Know that the denominator of the expression above is defined as the molecular 

partition function, q = ∑e 
−ε j / kT 

where ∑ indicates a sum over all states.  Be 
j j 

comfortable with re-writing this as q
i 

−ε i / kT where now the ∑ indicates a = ∑ g e 
i	 i 

sum over energy levels and gi is the degeneracy of each energy level.  Understand 

how q is a measure of the total number of occupied states when we define the 

energy of the ground state to be zero. 

•	 Know how to get from the molecular partition function to the system partition 

function: 

Q = qN  when the particles are distinguishable from each other 

N 
q

Q =  when the particles are indistinguishable (this usually applies to 
N ! 

translational motion, and should not be applied to rotation or vibrational 

motion as well.) 

•	 Know how to get from the partition functions to macroscopic thermodynamic 

properties starting from the internal energy and using the fundamental equations 

and the definition of thermodynamic properties to get everything else: 

�	 U = E = N ε = N ∑ε iPi = 
N 
∑ i i 

−ε / kT 2 

⎜
⎛ ∂ ln Q 

⎟
⎞

ε g e i	 = kT 
q	 ⎝ ∂T ⎠i i	 N V , 

�	 A = − kT ln Q 

�	 S = 
U − A 

= k ln Q + kT 
⎛
⎜ 

∂ ln Q ⎞
⎟ = − k∑Pj ln Pj


T ∂T ⎠ , j
⎝ N V 

⎛ ∂A ⎞ ⎛ ∂ ln Q ⎞ 
�	 p = − ⎜ ⎟ = kT ⎜ ⎟


V ⎠ T N
⎝ ∂ T N , ⎝ ∂V ⎠ , 

⎛ ∂A ⎞ ⎛ ∂ ln Q ⎞ 
�	 µ = − ⎜ ⎟ = kT ⎜ ⎟


⎝ ∂N ⎠T V , ⎝ ∂N ⎠ ,
T V 

⎛ ∂U ⎞ 
�	 CV = ⎜ ⎟ 

,⎝ ∂T ⎠N V 

•	 Know Ludwig Boltzmann’s famous equation S = k ln Ω , where � is generally 

referred to as the number of microstates, or the degeneracy of the most probable 

energy level, and understand what this approximation means.  Be able to use the 

binomial distribution to calculate � for simple systems. 

•	 Be comfortable applying the above the concepts as has been done in problem sets 

to finite and infinite ladders of states, and develop intuition for U, CV, A, S, etc in 

these different cases. 


