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APPLICATIONS: CHEMICAL AND PHASE EQUILIBRIA 
 
Apply statistical mechanics to develop microscopic models for problems you’ve 
treated so far with macroscopic thermodynamics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Products Reactants 

−εp = -D0,p 

−εr = -D0,r 

E 

0 
Separated atoms 

Product & reactant 
energy levels 

Chemical equilibria 
Gas phase: Calculate Kp from microscopic properties 
 

aA + bB Φ cC + dD 
 
 0 0 0ln 0 0

p A BC DG RT K cG dG aG bGΔ = − = + − +  
 
 Need G0 for each species 
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For molecules in the gas phase, internal degrees of freedom are rotations and 
vibrations and electronic states.  
 



5.60 Spring 2007  Lecture #28     page 
 

2

 int rot vib elecq q q q=  
 
 0D kT

elecq e=  Dissociation energy D0 from ground electronic level 
Usually no other electronic levels matter 
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Note we’ve set the zero of vibrational energy as the lowest vibrational level. 
The zero-point vibrational energy has been included in qelec by using the 
dissociation energy rather than the bottom of the electronic potential energy. 
 
kT (300 K) ↔ 200 cm-1

Most molecular vibrational frequencies > 500 cm-1

qvib ≈ 1  - Need to calculate it, but it’s not large  
 
We have not treated qrot. Levels are NOT evenly spaced: εrot = J(J + 1)ε0,rot 
where J = 0, 1, 2,…, and  ε0,rot ≈ 1 cm-1.  
High-T limit: qrot = kT/ε0,rot ≈ 100-1000.  
 
We’ve seen that qtrans ≈ 1030, qtrans/N ≈ 106. 
 
For multiple species in chemical equilibrium, need to use Ni for each species and 
use partial pressure values in pV term.  
 
Usually energy effects dominate in chemical equilibria.  
 
Relatively simple case: Solid-state chemical reaction aA Φ bB 
e.g. isomerization in an organic molecular crystal 
NA molecules of A, NB molecules of B,  NA + NB = N 
 
No translation or rotation, no change in pV ⇒ all the change is in the electronic 
and vibrational energy  
 
If vibrational frequencies are the same, then only the difference in dissociation 
energies is needed.  
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Recall the entropy due to mixing of two species  
 

( ) ( ) ( ) ( )

( ) ( ) ( ) 0

0 0

0

! !
! ! ! !

! 1 where 
! !

N NA B
A BA A B Bi

i A A

B ABA

A

N N
D kT D kTN D N D kTE kT

i
E N NA B A B

energies

N N N D D kT D kTNN N
A B A B A B A

N A B

N NQ E e e e e
N N N N

N q q q q q s s q q e e
N N

+−

= =

− Δ

=

= Ω = =

= = + = + = =

∑ ∑ ∑

∑ =

The binomial theorem gives a simple closed form for the sum.  
 
It’s convenient here to redefine the zero of energy as –DA so qA = 1 and  
 

( ) 2 3
1 2 31 1N N

NQ s a s a s a s a= + = + + + + + s  
 
The ground state of the system has all A molecules 
System energy is E(NB) = NBΔD0.  
Probability that the system has this energy is  
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The average number of B molecules is  
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and 0BE U N D= = Δ  
 
If vibrational energies differ then qvib also needs to be included.  
In general, low vibrational frequency favors a species since the levels are closely 
spaced, so there are many low-energy states of that species.  
  
For chemical reactions involving covalent bonds, the bond energies dominate 
over entropy. But the treatment we’ve given could also be used for much more 
subtle changes like rotation of CO molecules in a CO crystal. 
 



5.60 Spring 2007  Lecture #28     page 
 

4

Note that this treatment assumes no interactions between different unit cells. 
This gives rise to a fairly gentle T-dependence of the equilibrium. 
 
Solid-solid phase equilibria 
Phase transitions between different crystalline phases may be easier to treat 
then chemical reactions, because there is just one state at any temperature: 
the crystal in phase α or the crystal in phase β.  
 
Problem set problem
Einstein model for crystalline phases α and β, frequencies να, νβ 

Binding energy per atom: −εα, −εβ  
 

Phase α Phase β 

−εα

−εβ

E 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Binding energy is like dissociation energy. It includes zero-point vibrational 
energy, so no need to account for this separately.  
 
You can predict the phase transition temperature based on a simple first 
principles model. 
 
Phase transition only occurs if the crystal with stronger binding energy, e.g. α 
phase, also has higher vibrational frequency.  
 
Note that this treatment assumes complete cooperativity: the crystal is either 
all one or all the other phase. This gives rise to an abrupt T-dependence of the 
equilibrium.  
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Many intermediate cases occur.  
Example: helix-coil transition in biopolymers. Interactions make few long 
segments of helix or coil more stable than many short segments. (Similar for 
magnetic and nonmagnetic domains in a ferromagnetic crystal, and in all sorts of 
interacting systems). In this case the T-dependence is not completely abrupt, 
but not nearly as gradual as in the non-interacting limit.  
 
Can also calculate solid-gas phase equilibria, i.e. vapor pressure over the crystal.  
 
Assume monatomic ideal gas – only translational partition function.  
Familiar results: 
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Condition for phase equilibrium: gsμ μ=  
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gives vapor pressure p(T) over the crystal! Strong binding energy or low T give 
low pressure as expected. Low vibrational frequency also gives low p, since this 
allows higher entropy in the crystal.  
So you can calculate the p-T phase diagram that you described before in 
macroscopic terms only.  
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