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Fundamental Equations, Absolute Entropy, 
and The Third Law 

 
• Fundamental Equations relate functions of state to each other using 

1st and 2nd Laws 
 
 1st law with expansion work: dU = đq - pextdV 
  
 need to express đq in 
 terms of state variables 
 because đq is path dependent 
 

Use 2nd law:   đqrev = TdS 
 
For a reversible process   pext = p   and   đq = đqrev =TdS 
 
 
So…… **  dU = TdS – pdV ** 
 
This fundamental equation only contains state variables 
 
Even though this equation was demonstrated for a reversible 
process, the equation is always correct and valid for a closed (no 
mass transfer) system, even in the presence of an irreversible 
process. This is because U, T, S, p, and V are all functions of 
state and independent of path. 
 
 
AND  The “best” or “natural” variables for U are S and V, 
 

**  U(S,V) ** 
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**  U(S,V) ** 
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We can write similar equations for enthalpy
 
H = U + pV    ⇒   dH = dU + d(pV) = dU + pdV + Vdp 
 

inserting  dU = TdS – pdV   
 

⇒ **  dH = TdS + Vdp ** 
 

The natural variables for H are then S and p   
 

**  H(S,p) ** 
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We can use these equations to find how S depends on T. 
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From dH = TdS + Vdp    ⇒      
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• Absolute Entropies 
 

Absolute entropy of an ideal gas
 

From dU = TdS – pdV   ⇒   
T

pdVdUdS +
=  

At constant T, dU=0  ⇒   
T

pdVdST =  

For an ideal gas,   pV = nRT   ⇒   
V

nRdVdST =  

At constant T   d(pV) = d(nRT) = 0   ⇒   pdV = -Vdp 
 

So    
p

nRdpdST −=  

 
For an arbitrary pressure p, 
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where po is some reference pressure which we set at 1 bar. 
 
⇒   S(p,T) = So(T) – nR lnp     (p in bar) 
 

  plnR)T(S)T,p(S o −=    (p in bar)   
 

But to finish, we still need  )T(S o  ! 
 
Suppose we had )K0(S o  (standard molar entropy at 0 Kelvin) 
 

Then using 
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     Consider the following sequence of processes for the substance A: 
 

A(s,0K,1bar) = A(s,Tm,1bar) = A(ℓ,Tm,1bar) = A(ℓ,Tb,1bar)  
= A(g,Tb,1bar) = A(g,T,1bar) 
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Liquid boils, 
T
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Solid melts, 
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Since ∆S0 is positive for each of these processes, the entropy 
must have its smallest possible value at 0 K. If we take )K0(S o  = 
zero for every pure substance in its crystalline solid state, then 
we could calculate the entropy at any other temperature. 
 
This leads us to the Third Law !!! 

 
THIRD LAW: 
 
First expressed as Nernst's Heat Theorem: 
• Nernst (1905):  As T → 0 K ,  ∆S → 0   for all isothermal  
processes in condensed phases 
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More general and useful formulation by M. Planck: 
• Planck (1911):  As T → 0 K ,  S → 0   for every chemically 

homogeneous substance in a perfect crystalline state 
 
Justification: 

   It works! 
   Statistical mechanics (5.62) allows us to calculate the 
   entropy and indeed predicts )K0(S o  = 0. 
 
This leads to the following interesting corollary: 
 

It is impossible to decrease the temperature of any system to   
T = 0 K in a finite number of steps 

 
How can we rationalize this statement? 

Recall the fundamental equation, dU = T dS – p dV 
 
dU = Cv dT   For 1 mole of ideal gas, P = RT/V 
 
so Cv dT  = T dS – (RT/V) dV 

  dS = Cv d (ln T) + R d (ln V) 

 For a spontaneous adiabatic process which takes the system 
from T1 to a lower temperature T2, 

 ∆S = Cv ln (T2/T1) + R ln (V2/V1) ≥ 0 

 but if T2 = 0, Cv ln (T2/T1) equals minus infinity ! 

 Therefore R ln (V2/V1) must be greater than plus infinity, which 
is impossible. Therefore no actual process can get you to T2 = 0 K. 

 But you can get very very close! 
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 In Prof. W. Ketterle's experiments on "Bose Einstein 
Condensates" (MIT Nobel Prize), atoms are cooled to nanoKelvin 
temperatures (T = 10-9 K) … but not to 0 K ! 
 
 
Another consequence of the Third Law is that  
 
It is impossible to have T=0K. 
 
How can we rationalize the alternate statement? 
 
Consider the calculation of S starting at T=0K 
 

∫=
T
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p
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)bar1,T,s(S       

 
to prevent a singularity at T=0, Cp → 0 as T → 0 K 
 
in fact, experimentally  ...ATTC 3

p ++γ=

 
That is, the heat capacity of a pure substance goes to zero as T goes 
to zero Kelvin and this is experimentally observed. 
 
Combining the above with dT = đqp/Cp ,  at T=0 any infinitesimally 
small amount of heat would result in a finite temperature rise. 
 
In other words, because Cp → 0 as T → 0 K, the heat đqp needed to 
achieve a temperature rise dT, (đqp=CpdT) also goes to zero at 0 K. If 
you somehow manage to make it to 0 K, you will not be able to maintain 
that temperature because any stray heat from a warmer object 
nearby will raise the temperature above zero, unless you have perfect 
thermal insulation, which is impossible. 
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• Some apparent violations of the third law (but which are not !) 
 
Any disorder at T = 0 K gives rise to S > 0 
 

• For example in mixed crystals  
 

[ BBAAmix XlnXXlnXnRS +−=∆ ]   > 0   Always !!! Even at T=0K 
 But a mixed crystal is not a pure substance, so the third law 
is not violated. 
 

• Any impurity or defect in a crystal also causes S > 0 at   
0 K 

 
• Any orientational or conformational degeneracies such is 

in a molecular crystal causes S > 0 at 0 K, for example in 
a carbon monoxide crystal, two orientations are possible: 

 
C O C O C O C O C O C O C O 
C O C O  C O C O C O O C C O 
C O C O  C O O C C O C O C O 
C O C O  C O C O C O C O C O 


