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Goal of Statistical Mechanics: to describe macroscopic, thermodynamic 
properties in terms of microscopic atomic & molecular properties 
 
Properties of a system can be described at two levels: 
 

1) Macroscopic thermodynamic description e.g. p, V, n, CV, H, A, G,….. 
 

2) Microscopic description 
Specify the state of each molecule! 
Use classical or quantum mechanics 
More than 1023 variables! And need to update them every 10-15 s or so! 

 
Either classical or quantum description is impractical. Statistical mechanics 
describes macroscopic mechanics in statistical terms, i.e. in terms of “average” 
or “most probable” results.  
 
Probability of system in a state with given energy 
 
What is functional form? 
 
For independent energies εi and εj (e.g. energies of two different molecules or x 
and y components of kinetic energy in a single molecule, etc.) the joint 
probability should be the product: 
 

Pij(εi + εj) = Pi(εi)Pj(εj) 
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Suggests exponential form  ( )i j ji
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We expect high-energy states to be less probable than low-energy states, and 
that they become more probable at high T, i.e. ratio of εi to T is what matters. 
 
⇒ ( ) ~ εε −

i
i

i
C TP e  

 
Or more conventionally 
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i

i
kTP e   where k = R/NA = 1.38 x 10-16 erg/K is the Boltzmann constant 

 
For two states i and j with energies εi and εj, the relative probability is  
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To get absolute probabilities (not just relative), write  
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Sum of probabilities for all the states  
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⇒  probability of being in state i  

 
For a whole system or assembly of molecules, in a particular system state i 
(specified by indicating the state of each and every molecule) with energy Ei:  
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Partition functions 
The sums  
 

ε− ≡∑ i kT

i
qe   Molecular partition function    

and 
− ≡∑ iE kT

i
Qe   Canonical partition function 

 
measure how probabilities are partitioned among different available states. 
They are unitless numbers.  
 
Example: perfect atomic crystal lattice at T ≈ 0 K  
Set ground state energy E0 = 0  
All other state energies >> kT ⇒ Q ≈ 1 
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Example: mole of atoms in the gas phase at room T 
Could be treated quantum mechanically (particle in a box states) or classically 
(continuum of states of different kinetic energy).  
Or use “lattice” model: divide available volume into atomic size volume elements 
~ 1 Å3 = 10-30 m3

If total volume ~ 1 m3, then each atom has 1030 possible locations  
Molecular “translational” partition function is 
 

30, 10ε− = ≈∑ trans
i trans kT

i
qe  

 
For a system of N = 1024 atoms, how many microscopic states?  
How many ways to assign atoms to selected locations: 

( )( )( ) ( ) ( ) ( )24 2410 30 1030 30 30 30 3010 10 10 10 10 10 x N
transq= = =   

 
Huge number! Number of distinguishable states is less if the particles are 
indistinguishable: Have to divide by N! = 1024!  
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Stirling’s approximation: lnN! ≈ NlnN – N or N! ≈ e-NNN

So  
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Still huge! So probability for any one system state is incredibly small. The 
probability is partitioned among a huge number of states.   
 
Example: polymer configurations including protein folding.  
e.g. just 4 polymer subunits with some favorable interaction energy -εint (e.g. due 
to H bonding) if non-covalently bonded subunits are in neighboring “lattice” 
sites: 
 

Microstate i: 

Energy εi:                   -εint                  0            0           0   
 
Degeneracy g:              1                                   3     

 
 
 
 
 
 
 
 
 
In this simple example, the “configurational” molecular partition function is 
 
 , int int0 0 0 03ε ε ε−
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microstates
i

q e e e e e e e  

 
The last expression suggests writing the partition function as a sum over energy 
levels εi instead of individual states, if we account for their degeneracies gi: 
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This can be done for the canonical partition function too, if we account for the 
degeneracies Ωi of system energies Ei: 
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Thermodynamic properties from partition functions 
All the macroscopic thermodynamic properties can be derived from the 
microscopically based partition functions! 
 
Start with energy U = <E>, the average system energy. Use β = 1/kT. 
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Generally U is a function of (N,V,T).  
This leads naturally to the Helmholtz free energy A(N,T,V).  
Derive A based on analogy with the Gibbs-Helmholtz relation.  
 

 A = U – TS  A/T = U/T – S ( )
( ) ,
1

V N

ATU
T

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

 



5.60 Spring 2007  Revised Lecture #24    page 
 

6

 
( ), ,

ln ln
1V N V N

QU k
Tβ

⎛ ⎞⎛ ⎞∂ ∂
= − = − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Q
⇒ A = -kTlnQ 

  
 (constant of integration can be shown to be zero) 
 

,

lnln
V N

A U QS k Q kT
T T T

∂⎛ ⎞= − + = + ⎜ ⎟∂⎝ ⎠
 

, ,

ln
T N T N

A Qp kT
V V
∂ ∂⎛ ⎞⎛ ⎞= − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

, ,

ln
T V T V

A QkT
N N

μ ∂ ∂⎛ ⎞⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

 
Entropy in terms of probabilities and degeneracies 
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This is just 
 
  Gibbs eq for entropy in terms of state probabilities lni i

i
S k p p= − ∑

 
If the system is isolated, then all states have the same energy and the same 
probability p = 1/Ω where Ω is the number of degenerate states. Then 
 
  Boltzmann expression for entropy (on his tombstone!) lnS k= Ω
 
Can understand entropy in terms of number of different available states. This 
microscopic picture of entropy is at the heart of statistical mechanics.   
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