MIT OpenCourseWare
http://ocw.mit.edu

5.37 Introduction to Organic Synthesis Laboratory

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology Organic Chemistry 5.37

April 23, 2008
Prof. Rick L. Danheiser

Lecture 3
 Introduction to Organic Synthesis The Diels-Alder Reaction, Part III

The Diels-AIder Reaction

> If one chemical reaction had to be selected from all those in the repertoire of synthetic organic chemists as the most useful and powerful synthetic construction, it was clear by 1970 that the Diels-Alder reaction would be the logical choice. Its application not only leads to a strong increase in molecular complexity (molecular size, topology, stereochemistry, functionality, and appendages), but also can result in structures that lend themselves to additional amplification of complexity by the use of other powerful synthetic reactions.

Intrinsic Stereoselectivity

\star Suprafacial with respect to the diene
\star Suprafacial with respect to the dienophile \star Alder endo rule

Asymmetric Induction

\star Substrate control by chiral dienophiles
\star Substrate control by chiral dienes
\star Stereocontrol via chiral auxiliaries

Catalytic Asymmetric Cycloadditions

Case Study

Total Synthesis of Prostaglandins
Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. J. Am. Chem. Soc. 1969, 91, 5675

Prostaglandin $\mathrm{F}_{2 \boldsymbol{}}$

What is the mechanism of this hydrolysis?

See C. S. Shiner et al. Tetrahedron Lett.
1983, 24, 5687

