Chapter 15 (pp. 498-515) Benzene and Aromaticity

Suggested Problems:

15.4, 15.10, 15.19, 15.27, 15.31, 15.32, 15.33, 15.35, 15.36, 15.38, 15.41

15A Introduction and Nomenclature 15B Stabilityof Aromatic Compounds/Huckel's Rule 15C Aromatic Ions 15D Aromatic Heterocycles 15E Polycyclic Aromatic Compounds

Effect of Aromatic Stabilization on Reactions with Benzene

Heat evolved upon catalytic hydrogenation (ΔH°) A MEASURE OF ALKENE STABILITY

Catalytic hydrogenation of benzene and various cyclohexenes

Magnitude of aromatic stabilization = 36 kcal/mol

Benzene (C₆H₆) is not "cyclohexatriene!

C=C 1.34Å C-C 1.54Å

Each sp² hybridized C in the ring has an unhybridized p orbital perpendicular to the ring which overlaps around the ring

> 1879 Landenberg

Criteria for Aromaticity

- 1. Cyclic
- 2. Unhybridized p orbital in continuous cyclic system
- 3. Able to adopt a planar geometry
- 4. Fulfills Huckel's Rule and includes (4n + 2) electrons n = 0, 1, 2, 3, 4..... (the 2, 6, 10, 14....electrons) □

 Initially, all cyclic conjugated hydrocarbons were proposed to be aromatic

•However, cyclobutadiene is so reactive that it dimerizes before it can be isolated

•Cyclooctatetraene adds Br₂ readily.

•Look at Molecular Orbitals (MOs) to explain aromaticity in benzenelike molecules

Constructing Molecular Orbitals

• π molecular orbitals are the sideways overlap of *p* orbitals

•*p* orbitals have 2 lobes. Plus (+) and minus (-) indicate the opposite phases of the wave function, <u>not</u> electrical charge

•When lobes overlap constructively, (+ and +, or - and -) a bonding MO is formed

•When + and - lobes overlap, waves cancel out and a node forms; antibonding MO

MO Rules for Benzene

•Six overlapping p orbitals must form six molecular orbitals

- Three will be bonding, three antibonding
- •Lowest energy MO will have all bonding interactions, no nodes
- •As energy of MO increases, the number of nodes increases
- •System symmetric so 2 pairs of degenerate orbitals

Energy Diagram for Benzene

6 atomic orbitals - 6 molecular orbitals System symmetric so 2 pairs of degenerate orbitals

The six electrons fill three bonding pi orbitals.

All bonding orbitals are filled ("closed shell"), an extremely stable arrangement (AROMATIC STABILIZATION).

Energy Diagram for Cyclobutadiene

If cyclobutadiene adopted a coplanar geometry - two of the molecular orbitals would each have a single unpaired electron very unstable. Applies to any (4 n) system Cyclobutadiene is ANTIAROMATIC

The Acidity of the Pyridinium Ion

- □ Heterocyclic aromatic compound.
- Nonbonding pair of electrons in sp^2 orbital, so weak base, $pK_b = 8.8$.

The Acidity of Protonated Pyrrole

Also aromatic, but lone pair of electrons is delocalized: much weaker base.

Aromatic Cations and Anions

Many Benzene Derivatives are Useful Drugs

