MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.111 Lecture Summary #28 <u>Transition Metals: Crystal Field Theory</u> Chapter 16 p 681-683 (p 631-633 in 3rd ed)

From Friday's handout

d Orbitals

There are five d orbitals: d_{xy} , d_{xz} , d_{yz} , $d_{x^2-y^2}$, d_{z^2} .

You need to be able to draw their shapes.

d_z² has maximum amplitude along z and doughnut in xy plane

 $d_{x^2 \cdot y^2} \text{ has maximum} \\ \text{amplitude along x and y axes.}$

 d_{yz} has maximum amplitude 45° to y and z axes

 d_{xz} has maximum amplitude 45° to x and z axes

 d_{xy} has maximum amplitude 45° to x and y axes

Today's material

<u>Crystal field and ligand field theories</u> were developed to explain the special properties of coordination complexes of transition metals.

Basic idea behind theories:

When a metal ion with a given formal oxidation number is placed at the center of a coordination sphere defined by a set of ligands, the energy levels of the d orbitals housing the metal electrons are altered from those in the free metal ions.

Crystal field theory is based on an ionic description of the metal-ligand bond.

<u>Ligand field theory</u> includes covalent as well as ionic aspects of coordination. It is a more powerful description of transition metal complexes. It is, however, beyond the scope of this course. (Take 5.03 if you are interested in this topic).

<u>Crystal Field Theory</u> considers ligands as negative point charges and considers the repulsion between the negative point charges and the d-orbitals.

Ligand (L) point charges are directed toward the d_z^2 and $d_{x^2-y^2}^2$ orbitals of metal (Mⁿ⁺), resulting in a large repulsion. The d_z^2 and $d_{x^2-y^2}^2$ orbitals are destabilized, and they are destabilized by the same amount. d_z^2 and $d_{x^2-y^2}^2$ are degenerate. The d_z^2 and $d_{x^2-y^2}^2$ orbitals are destabilized more than d_{xy} , d_{yz} , and d_{xz} .

Large repulsion- destabilized relative to d_{xy} , d_{yz} , d_{xz} .

Ligand point charges are directed in between d_{xy} , d_{xz} , and d_{yz} orbitals (not directly toward them). The d_{xy} , d_{xz} , and d_{yz} orbitals are stabilized relative to d_z^2 and d_{x-y}^2 orbitals, and they are stabilized by the same amount (i.e. d_{xy} , d_{xz} , and d_{yz} orbitals are degenerate).

Small repulsion - stabilized relative to d_z^2 and $d_x^2_{-y}^2$

 Δ_{o} is the overall splitting between e_{g} and t_{2g} orbitals = octahedral field splitting energy ("o" in Δ_{o} is for octahedral)

Because the overall energy is maintained, the energy of the three t_{2g} orbitals are lowered by (2/5) Δ_0 and the energy of the two e_g orbitals are raised by (3/5) Δ_0 relative to the spherical crystal field.

Example 1. [Cr(NH₃)₃Br₃]

(a) figure out the oxidation number of Cr?

(b) figure out d count

(c) draw octahedral crystal field splitting diagram

Octahedral crystal field splitting diagram

(d) Write dⁿ electron configuration:

(e) Predict Crystal Field Stabilization Energy (CFSE) - energy change relative to that of the hypothetical spherical crystal.

CFSE =

Example 2. $[Mn(H_2O)_6]Cl_3$

(a) figure out the oxidation number of Mn?

(b) figure out d count

(c) draw octahedral crystal field splitting diagram

There are two possible octahedral crystal field splitting diagrams for Mn³⁺: one for the case where the magnitude of Δ_0 is greater than the pairing energy (PE), and one for the case where it is less. Pairing energy is the energy of the electron-electron repulsion.

 $Mn^{3+} d^4$

weak field ($\Delta_0 < PE$)

(d) d^n electron configuration =

dⁿ electron configuration =

Δ_{o} is small (weak octahedral field), (Δ_{o} <pe). are="" electrons="" placed="" singly="" with<br="">parallel spins to the fullest possible extent in both t_{2g} and e_{g} orbitals.</pe).>	$\frac{\Delta_{o} \text{ is large (strong octahedral field)}}{(\Delta_{o} \ge PE)}$. Electrons are paired in lower energy t_{2g} orbitals. e_{g} orbitals are not occupied until t_{2g} orbitals are filled.
This arrangement of electrons gives	This arrangement of electrons gives
the maximum number of unpaired	the minimum number of unpaired
electrons (high spin).	electrons (low spin).

NOTE: Mn^{3+} in $[Mn(H_2O)_6]Cl_3$ is high spin, why? We will come back to this.

For High spin $Mn^{3+} d^4$	Low spin $Mn^{3+} d^4$
CFSE =	CFSE =

Example 3. Co²⁺ in an octahedral coordination complex (a) figure out oxidation number (given)

(e) Predict Crystal Field Stabilization Energy (CFSE)

(**b**) figure out d count

(c) draw octahedral crystal field splitting diagram

(e) CSFE=

CFSE=