basic elements

		points	lines	planes	volumes
·	0D	\checkmark			
	1D	\checkmark	\checkmark		
	2D		\checkmark	\checkmark	
	3D	\checkmark	\checkmark	\checkmark	

space

shape

arrangement of basic elements in space

shapes made up of straight lines in 2D space (plane)

lines can be arranged in any way to make a shape

any number of lines can be arranged to make a shape

empty shape

0

shapes have a position, orientation, size in a coordinate system

arithmetic of shapes

relations

part of (≤) equality (=)

operations

addition (+) subtraction (-) transformations (t)

2D transformations

translation rotation reflection glide reflection scale

translation

reflection

glide reflection

3D transformations

translation rotation screw rotation reflection glide reflection rotor reflection scale

TRANSLATION

ROTATION

GLIDE REFLECTION

ROTOR REFLECTION

scale (x2)

SCALE

Question

Given a vocabulary of shapes and operations of +, -, t, what designs can be created?

Recursion

A repetitive (seemingly circular) process with the results of each repetition depending on the results of the previous repetition.

Base Something exists

Recursion step

If something exists, then other things can be produced from it in a clearly specified way.

shape grammar

base: initial shape

recursion: rules

rule

 $X\,\rightarrow\,Y$

nondeterminism

design idea

rule

computation

other designs generated by the rule

shape emergence

shape not predefined,

one that arises from the interaction of original shapes

shape rule: $X \rightarrow Y$

A rule applies to a design:

whenever there is a transformation t that makes the left-side X a part of the design: $t(X) \le design$

To apply the rule:

first subtract the transformation t of the left-side X from the design, and then add the same transformation t of the right-side Y to the design.

design

The result of applying the rule is a new design:

new design = [design - t(X)] + t(Y)

rules for:

kinds of designs

*

 $X \rightarrow X + rotation(X)$

 $\begin{array}{ccc} X \rightarrow & X + reflection(X) \\ \blacksquare \rightarrow & \blacksquare \\ X \rightarrow & X + rotation(X) \\ \blacksquare \rightarrow & \blacksquare \end{array}$

symmetry rule

$$X \rightarrow X + t(X)$$

Koch snowflake curve

Sierpinski triangle

fractal tree

parametric fractal tree

fractal rule

$$X \rightarrow t_1(X) + t_2(X) + \dots + t_n(X)$$

Mughul gardens

rules for:

design processes

Chinese ice-ray shape grammar (Stiny, 1977)

computation of an ice-ray design

Corpus of Existing Designs - 1977 / 1997

Malagueira - Alvaro Siza Vieira

Malagueira housing designs of Alvaro Siza (Jose Duarte)

rule from Siza grammar

subdivision rule

$X \rightarrow X + D$

where D is a dividing element, a line or plane for example

addition rule

 $X \rightarrow X + Y$

addition rule

 $X \rightarrow X + Y$

subtraction rule

 $X + Y \rightarrow X$

addition rule

subtraction rule

computation

fellow

tumbling shapes

rule $X \rightarrow Y$

addition rule: $X \le Y$ subtraction rule: $Y \le X$

add and subtract rule: $X \le Y / and Y \le X /$