basic elements

shape

arrangement of basic elements in space
shapes

shapes made up of straight lines in 2D space (plane)

lines can be arranged in any way to make a shape

any number of lines can be arranged to make a shape

empty shape

0

shapes have a position, orientation, size in a coordinate system

arithmetic of shapes

relations
part of (\leq)
equality (=)
operations
addition (+)
subtraction (-)
transformations (t)

2D transformations

translation
rotation
reflection
glide reflection
scale

translation

rotation

reflection

glide reflection

translation

reflection

scale

3D transformations

translation

rotation
screw rotation
reflection
glide reflection
rotor reflection
scale

$\sqrt{20}^{\left(5^{n 2(2)}\right.}$

TRANSLATION

ROTATION

SCREW ROTATION

rotation
axis

ROTOR REFLECTION

scale (x^{2})

Question

Given a vocabulary of shapes and operations of,,$+- t$, what designs can be created?

Recursion

A repetitive (seemingly circular) process with the results of each repetition depending on the results of the previous repetition.

Base
Something exists
Recursion step
If something exists, then other things can be produced from it in a clearly specified way.
shape grammar

base:	initial shape
recursion:	rules

rule

$$
X \rightarrow Y
$$

computation (derivation)

nondeterminism

$$
\begin{gathered}
\mathrm{s}_{1} \Rightarrow \mathrm{~s}_{2} \Rightarrow \mathrm{~s}_{3} \\
\ngtr \mathrm{~s}_{5} \Rightarrow \ldots \Rightarrow \mathrm{~s}_{n} \\
\Downarrow \mathrm{~s}_{6}
\end{gathered}
$$

design idea

computation

other designs generated by the rule
shape emergence
shape not predefined, one that arises from the interaction of original shapes

computation with rules
shape rule: $X \rightarrow Y$ design

A rule applies to a design:
whenever there is a transformation t that makes the left-side X a part of the design: $t(X) \leq$ design

To apply the rule:
first subtract the transformation t of the left-side X from the design, and then add the same transformation t of the right-side Y to the design.

The result of applying the rule is a new design: new design $=[$ design $-t(\mathrm{X})]+t(\mathrm{Y})$
rules for:
kinds of designs

symmetry rule

$$
X \rightarrow X+t(X)
$$

Koch snowflake curve

Sierpinski triangle

fractal tree

parametric fractal tree
fractal rule

$$
\mathrm{X} \rightarrow t_{1}(\mathrm{X})+t_{2}(\mathrm{X})+\ldots+t_{n}(\mathrm{X})
$$

Mughul gardens
rules for:

design processes

$\Delta-\Delta \Delta-\Delta \Delta-\Delta \square-\theta$

Chinese ice-ray shape grammar (Stiny, 1977)

\Downarrow

\Downarrow

\Downarrow

\Downarrow

\Downarrow

\Downarrow

\Downarrow

computation of an ice-ray design

rule from Siza grammar

subdivision rule

$$
X \rightarrow X+D
$$

where D is a dividing element, a line or plane for example
addition rule

$$
X \rightarrow X+Y
$$

addition rule
 $$
X \rightarrow X+Y
$$

subtraction rule

$$
X+Y \rightarrow X
$$

addition rule

subtraction rule

computation

fellow

tumbling shapes

$$
\text { rule } \mathrm{X} \rightarrow \mathrm{Y}
$$

```
addition rule: 
subtraction rule: }\textrm{Y}\leq\textrm{X
add and subtract rule: }\textrm{X}\leq\textrm{Y}/\mathrm{ and }\textrm{Y}\leq\textrm{X}
```

