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Diffraction describes the perturbation of the propagation of wave motion when the wave 
encounters an object with different properties from the medium in which the wave is 
normally propagating.  It is a subset of the more general phenomenon of scattering, for 
example the scattering of accelerated subatomic particles by nuclei that is explored by 
nuclear physicists or the scattering of visible light photons from surfaces of objects in a 
field of view into the retina of our eyes that gives us a visual impression of our 
surroundings.  The utility of diffraction—or scattering— phenomena in general is that it 
is by the interaction of electromagnetic waves (like light or X-rays) or particles (like 
electrons or neutrons or He nuclei) that we learn about the constituents of matter and its 
internal organization.  This is of crucial importance to a materials scientist who wishes to 
understand the fundamental atomic-scale origins of useful physical properties of solids 
(like strength, deformation and fracture, electrical conduction, magnetic response) that 
underlie both traditional historical uses and more modern applications in ubiquitous 21st-
century devices.  To the extent that moving particles can be considered as having wave-
like properties (the “wave-particle duality” in modern physics), the two phenomena of 
diffraction and scattering are in essence the same and can be treated with the same 
formalism and with the same result. 
 
 The three 3.014 experiment 1 modules, α1,  α2 and α3, are all designed to acquaint 
you with the diffraction phenomenon and its potential for elucidating structure in solid 
materials.  This preamble provides background information common to each.  More 
detailed treatments can be found in the set of laboratory notes on diffraction by Professor 
Hobbs and his book Diffraction Principles and Materials Applications (Case Western 
Reserve University, 1981), a copy of which resides on the shelf above the diffractometer. 
 
 A diffraction experiment consists of a source of waves, an object, and a wave 
detector.  A wave is a disturbance in a medium that propagates in space and time.  The 
most interesting and useful waves are disturbances that repeat  regularly in space and 
time—that is, that are periodic.  The spatial period is known as the wavelength λ, while 
the inverse of the time period is called the frequency ν.  The inverse of the spatial period 
is also a useful representation, known as the wave vector k, that can be used to describe  
at the same time both the wavelength  and the direction of wave propagation 
 

k  =  (1/λ) ˆk , (1) 
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where ˆk is a unit vector along the direction of wave propagation.  The “momentum” of a 
propagating wave (first described in 1923 by the French physicist Prince Louis-Victor de 
Broglie) is  
 

p  = hk , (2) 
 

where h =6.6×10-34 J s is Planck’s constant (after the German physicist Max Planck, 
inventor of quantum mechanics in 1900), so that k is really a momentum vector. Notice 
that k is measured in units of inverse length and is therefore best represented in a space, 
called reciprocal space, which has dimensions of inverse length. 
 
 In diffraction, a wave (as represented by its wave vector) incident on an object is 
scattered by the object through some angle Θ, called the diffraction angle, into a wave 
propagating into direction ˆk’, where it is registered by a detector.  The vector difference 
between incident and diffracted waves is called the diffraction vector κ, which—provided 
that the wavelength is not altered in the scattering process—is given geometrically by 
 
   κ  =  k’ – k  = (1/λ) (ˆk’ – ˆk)  =  2 sin(Θ/2)/λ. �  

 
How small a component in an object from which we can infer information by diffraction 
(say, the smallest dimension along the x axis) is governed by a quantum-mechanical limit 
of knowability, known as the Heisenberg Uncertainty Principle (after German physicist 
Werner Heisenberg’s 1927 revelation).  The Uncertainty Principle states that we can 
simultaneously know information about the momentum px in a given direction and 
position x along that direction—in this case of our investigating wave—only to the 
precision 
 
      δpx • δx  >  h . (4) 
 
Substituting (2) and (3) into (4) yields 
 
 h δkx • δx =  h (±κx) cos(Θ/2) • δx  =  (h[± 2 sin(Θ/2) / λ] cos (Θ/2) • δx  
   =  h (1/λ) 4 sin(Θ/2) cos(Θ/2) • δx  =  h 2 sinΘ/λ • δx  >  h (5) 

or     
      δx > λ/2sinΘ . (6) 
 
Since the maximum value of sinΘ is 1, the minimum object component size that can be 
investigated has dimensions ~λ/2, or half the investigating wave’s wavelength.  This is a 
fundamental limitation.  It explains why light microscopes (λ ~ 0.5 µm) are not generally 
configured for magnifications beyond 1000×, and why electron microscopes using fast 
electrons (λ ~ 2-4 pm) are required to obtain images at the atomic scale (x ~ 100 pm). 
 
 The amplitude of the scattered wave is determined by the nature of the interaction 
between the internal components of the object and the incident wave.  The strength of the 
interaction at some point rj in the object can be characterized by the scattering factor 
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fj(Θ), which measures the amplitude of the scattered wave (relative to an incident wave of 
unit amplitude) emanating from that point.  The strength of interaction with matter may 
be large (as for electrons or light) or small (as for X-rays or thermal neutrons).  The 
interaction strength operationally governs from how small a volume information may be 
extracted (from as small as a single large atom to a tens of atoms for electron waves, 
millions of atoms for X-rays, tens of millions of atoms for thermal neutrons) because of 
necessity to accumulate a statistically significant detector signal. 
 
 The information appearing on the exit-face surface of an object illuminated by a 
wave source is known as the transmission function of the object Φ(x,y), which recounts 
point-by-point the changes in phase and amplitude of the incident wave effected by its 
interactions with constituents of the object as it traverses the object along the z direction.  
These changes could, in principle, be detected with spatial resolution given by the 
Uncertainty Principle using a suitably microscopic incident probe or similarly 
microscopic exit-face detector system (such as a magnifying imaging system focusing on 
the exit face, as is done in electron microscopes at atomic resolution and in light 
microscopes at micrometer resolution).  A distant observer or detector, however, records 
a very different picture.  This is because waves emanating from different points on the 
object exit face interfere with each other as they continue to propagate.   
 
 For a wave source located far from the object (this ensures that the wave is a 
plane wave) and a similarly distant detector, what appears at the detector is an intensity 
pattern known as the Fraunhofer diffraction pattern that corresponds to a Fourier 
transformation of Φ(x,y).  Fourier transformation (named after its late 18th c. originator, 
French mathematician J. B. J. Fourier) is a mathematical operation that takes information 
in real space—such as constituent identities and positions—over into reciprocal space.  A 
distant observer can reference the emitting object only by the angular relationship 
between the direction of the incident wave ψ (that would be detected in the absence of 
the object), as represented by its wave vector k, and the direction of the diffracted wave 
ψ,’which starts out as  ψ = ψ Φ(x,y) at the exit face of the distant object and propagates 
to the observer along a direction represented by k’.  Hence, the observer’s position is 
defined by the angular relationship κ = k’ – k in (3), which means that the observer’s 
position is defined in reciprocal space κ.  The diffracted intensity observed is 
 
    I’(κ)  =  | F  {ψ Φ(x,y)} |2    (7) 
 
where F indicates the Fourier transform operation and | |2 indicates the intensity of the 
transform.  The Fourier transform F  {Φ(x,y,z)} of the real-space details of the object—as 
deduced by the investigating wave ψ—is thus what is in principle retrievable.  Because 
the intensity of the diffracted wave, and not its separate amplitude and phase, is what is 
generally measured, F  {Φ(x,y,z)} cannot in general be inverse-transformed to retrieve 
the object transmission function Φ(x,y,z).  This difficulty is known as the phase problem, 
and the attempt to inverse transform the diffracted intensity 
 
     F    −1 {I’(κ)}  = ∫ Φ(x-x’,y-y’,z-z’) Φ(x’,y’,z’) dx dy dz  =  Φ(x,y,z) * Φ(-x,-y,-z)(8) 
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yields what is known as a Patterson function involving a convolution (the “*” operation 
in (8), discussed below) of the transmission function with itself inverted through the 
origin, which represents the object as viewed through itself and not Φ(x,y,z) as viewed 
directly by a proximate observer. 
 
 Some properties of the Fourier transform operation can be easily demonstrated 
optically, using the laser diffractometer set-up that uses macroscopically accessible 
diffraction phenomena to provide useful background for all three 3.014 Laboratory 1 – 
Module α� (n=1–3) experiments.  What is most important to note, and most easily 
demonstrable, is the inverse relationship of the two spaces: large distances or dimensions 
in real space transform to small distances or dimensions in reciprocal space.  If a large 
but almost infinitely distant luminous object (like a star) is viewed, the distant observer 
sees a(n infinitesimally small) point of light.  The two spaces, real and reciprocal, also act 
as if they were rigidly fixed to each other: rotating one space similarly rotates the other 
space.  A third notable property is that the diffraction process, in which an intensity is 
observed, introduces a center of inversion symmetry to the diffraction pattern where none 
may be present in the original object. 
 
 Constituents of an object that are repeated in space, such as atoms in a solid, 
contain both positional and transmission-function information, φ(x,y,z).  These are 
separable in diffraction space.  If D(r) = Σn δ(r−rn) represents the positions of identical 
atoms at rn, where the δ function 
     ⎧∞   when r = rn  
    δ(r−rn) =     ⎪  (9) 

    ⎩ 0  when r ≠ rn   
 
identifies (emphatically!) an atom position at r = rn, and φ(r) represents their (identical) 
atom transmission functions, then the transmission function of the whole solid  
 
    Φ(r)  =  D(r) * φ(r) (10) 
 
is given by another mathematical operation called convolution, which reproduces φ(r) at 
every position rn.  The convolution representation is useful because the Fourier transform  
of a convolution of two functions is the product of their individual transforms: 
 
    F   {Φ(r)}  =  F  {D(r)} • F  {φ(r)}. (11) 
 
That is, the diffraction pattern from the array of points in space (i.e. a set of δ functions)  
_____ 
1Actually, such a distant source effectively functions as a point source, emitting light in all directions, but 
an astronomer can collect its emitted light only over a small solid angle—defined for example by the 
diameter 2r of the telescope lens used for observation, over which small distance the light wave resembles 
a plane wave.  Aperturing the optics in this way converts what should be a point-like image of the star at 
the image plane (magnified M times) into a larger disk of intensity, of width (at half maximum intensity) of 
about M(1/2r), accompanied by a weaker set of concentric rings around the central disk.  This function, 
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transform of the effective lens aperture. 



representing atom positions and the diffraction pattern from an individual atom 
transmission function are superimposed on each other, with the same origin at κ = 0 in 
reciprocal space.   
 
 The Fourier transforms of a δ function δ(r−rn) at r = rn and of a set of such 
position functions {Σn δ(r−rn) are respectively 
 
    F  {δ(r−rn)}  =  exp (−2πirn) 
       (12) 
    F  {Σn δ(r−rn)}  =  Σn exp (−2πirn). 
 
The Fourier transform of the transmission function of a single atom, which corresponds 
to the Fraunhofer amplitude of a unit wave diffracted from a single atom j 
 
    ψ�’(κ)  =   F  {φj(r)}  ≡  �j(κ),  3 
 
is the scattering factor fj for that atom and clearly depends on the nature of the interaction 
between the incident wave (which could be X-rays or electron or thermal neutron particle 
waves) and the atom, as represented by the atom transmission function φ�.  Since κ = 2 
sin(Θ/2)/λ from (3), f can also be represented as a function of diffraction angle, f(Θ), and 
represents the angular distribution of scattered amplitude from an atom.  The Fraunhofer 
diffraction wave amplitude from a collection of (possibly different) atoms, 
 
 ψ’(κ)   =   �  {Σj [φj(r) ∗ δ(�−�j)] }  =  Σj fj(κ) exp (−2πirj)  ≡  �(κ) , (14) 
 
is called the structure factor if the summation in (14) is carried out over the atoms of the 
unit cell of a crystal with rj the positions of atoms within the unit cell. 
 
 A crystal, which is a collection of N unit cells stacked upon each other, can be 
represented by a set of δ functions r����������� the positions of the 
������lls 
 
    Dn(r)  =  ΣΝ

n=1 d(r−rn) (15) 
 
which represent a lattice of points in space known as the real lattice.  The Fourier 
transform of real lattice of unit cells  
 
   D (κ)  =  F  {ΣΝ

n=1 d(r−rn) }  = ΣΝ �� exp (−2πirn) (16) 
 
converges to another periodic set of δ functions at positions κn in reciprocal space, called 
the reciprocal lattice 
 
     D∞(κ) = Σn δ(κ−κn) , (17) 
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for N → ∞ (a very large crystal).  The reciprocal lattice is thus the Fourier transform of 
the real lattice and is a property of a given Bravais lattice type (face-centered cubic, 
body-centered tetragonal, etc.).  Because the real and reciprocal lattices act as if rigidly 
fixed together, there is a convenient geometric way to relate the two (suggested in 1850 
by the 19th-century French mining engineer, Auguste Bravais, who also classified the 14 
possible lattice types that bear his name).  A periodic array of points in 3-space defines 
set of parallel planes that contain varying densities of those points and are defined by the 
inverses of their intersections u-1a, v-1b, w-1c with the principal axes a,b,c of the unit cell 
chosen.  A planar set is represented by the set of integers (hkl) obtained when all fractions 
are removed by multiplying each reciprocal intersection value by the lowest common 
multiple in uvw; (hkl) are called the Miller indices (after William Hallowes Miller (1801-
1880), a British mineralogist and crystallographer).  That they are represented by inverse 
distances already transforms their representation into one of reciprocal space!  The 
spacing dhkl of a given set of planes depends on the values of (hkl) and the crystal 
structure.  For example, for a cubic crystal with lattice parameter a,  
 
    dhkl  =  a(h2 + k2 +l2)−1 . (18) 
 
Because the planar spacing dhkl is measured normal to the (hkl) planes, one way to 
construct the reciprocal lattice from the real lattice is to (starting from a common origin κ 
= 0) measure out multiples of dhkl

-1 along these planar normals and erect a reciprocal 
lattice point g at each multiple.  In this way, a real lattice set of planes (hkl) corresponds 
to a reciprocal lattice point 
 
    ghkl = ha* + kb* + lc* (19) 
     
where a*, b* and c* are unit vectors along the principle axes of the reciprocal lattice.  
The length of this reciprocal lattice vector is 
 
     |ghkl|  = dhkl

-1  (20) 
 
For example, the (246) set of planes, which are parallel to but have half the spacing of the 
(123) planes, corresponds to the reciprocal lattice vector 
 
  g246  =  2a* + 4b* + 6c*  =  2(a* + 2b* + 3c*)  =  2g123   
 
at twice the distance from the reciprocal space origin along the same direction.  A simple 
analysis shows that a simple cubic real lattice of parameter a transforms to a simple cubic 
reciprocal lattice of parameter a−1; a body-centered cubic real lattice becomes a face-
centered cubic reciprocal lattice and vice versa.  Some sets of planes (hkl) are 
crystallographically equivalent to other sets of planes (h’k’l’), for example (100), (010) 
and (001) in a cubic crystal for which a cubic unit cell is chosen with orthogonal principle 
axes a1,a2,a3 of equal length a.  This can easily be seen in reciprocal space, where the 
equivalent reciprocal lattice points are related by the symmetry elements of the lattice (in 
this example, by the 4-fold rotation axes coincident with the orthogonal principal axes 
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a*,b*,c*).  Such families of equivalent planar sets are designated {hkl} (but only in the 
cubic system can they be readily obtained by simply transposing the indices, as in the 
above example!). 
 
 The Fraunhofer intensity diffracted from a very large crystal is, using (7), (14) 
and (20), 
 
  I’(κ)  =  |ψ’(κ)|2  =  |F  {D∞(r) * ψΦunit cell(r)}|2  = |ψ|2 |D (κ) • F(κ)|2 ,(21) 
 
which is just the pattern of the reciprocal lattice modulated by the structure factor.  The 
intensity at each reciprocal lattice point therefore depends on the details of structure 
factor F(κ), which depends on where and what kind of atoms are located in the unit cell.  
Note in particular that whenever the structure factor F(κ) = 0 there will be no intensity, 
and that for an infinite perfect crystal there will be no intensity appearing between the 
reciprocal lattice points.  How, then, is this reciprocal-space intensity distribution 
sampled by the observer (or detector)?  The answer was first provided by the German 
physicists Max von Laue and his student P. P. Ewald in 1915.  Since diffracted intensity 
appears only at the reciprocal lattice points, the observer must clearly reside at the 
positions 
 
      κ = g (22) 
 
where g is a reciprocal lattice vector.  The condition (22) is known as the Laue condition.  
Ewald deduced from simple geometry, and using κ = k’ − k from (3), that if one draws 
the incident wave vector k in the proper orientation, terminating at the origin of 
reciprocal space (i.e. at the reciprocal lattice point κ = 0), and constructs a sphere of 
radius |k| = λ−1 centered on the beginning of the k vector, then that sphere (called the 
Ewald sphere, which must necessarily pass through κ = 0) will also intersect another 
reciprocal lattice point g whenever the Laue condition κ = k’– k = g is satisfied.  The 
wave then traveling along direction k’ represents a strongly diffracted “beam” at the 
discrete angle Θ defined between k and k’.  These strongly diffracting discrete 
orientations physically represent a condition where all the unit cells are scattering exactly 
in phase.   
 
 The Ewald construction shows that the reciprocal space is sampled by the detector 
along the surface of the Ewald sphere.  As the angle the incident wave makes with the 
object is varied (either by rotating the object or by changing the source position), the 
Ewald sphere rolls on the point κ = 0, sampling other parts of reciprocal space along its 
surface.  For a crystal with its largest planar spacings dhkl of the same order as the 
wavlength λ of the interrogating wave, the distances between reciprocal lattice points and 
the radius (= λ–1) of the Ewald sphere are comparable, and the sphere must be rotated 
through large angles (~tens of degrees) in order to guarantee an intersection with a 
reciprocal lattice point and generation of a strongly diffracted “beam” along k’.  A 
mechanical device for accomplishing this rotation is a diffractometer, an example of 
which is the microwave (λ = 30 mm) diffraction set-up explored in experiment 1-α1 or 
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the X-ray (λ = 154 pm) diffractometer repeatedly utilized in experiments 1-γ1, 1-γ2, 2-γ1, 
3-β3, 3-γ3, 4-γ1 and 4-γ3, for both of which experiment sets λ ~ d.  For the case that λ << 
d, which occurs in the diffraction of He-Ne laser light (λ  = 632.8 nm) from macroscopic 
objects with d ~ a few mm (and also in the diffraction of energetic electrons from 
crystals, for which λ ~ 2 pm and d ~  100 pm), the Ewald sphere radius is large compared 
to reciprocal lattice point spacings, and therefore the Ewald sphere appears nearly planar.  
In this case, a whole plane of the reciprocal lattice can be sampled at once, with small 
(~1˚) diffraction angles Θ and many beams collectible simultaneously on a fixed flat-
plate detector. 
 
 The relationships (3) and (20) may be combined to reformulate the Laue 
reciprocal-space condition (22) into a real-space diffraction criterion, first put forward in 
1913 by the father-son pair of English physicists, Sir William H. and Sir W. Lawrence 
Bragg, as follows: 
 
  |k’ – k|  = (1/λ) |ˆk’ – ˆk|  =  2 sin(Θ/2)/λ  =  ghkl  =  dhkl

−1 (23) 
 
������������������� ��  
 
   λ  =  2 dhkl sin(Θ/2)  =  2 dhkl sin(θΒ) (24) 
 
where θB is known as the Bragg angle and (24) is known as Bragg’s Law.  This criterion 
suggests that an incident wave can be envisaged as “reflecting” off a given set of parallel 
planes, as from a mirror with equal incident and reflection angles θ, but only when 
incident upon those planes at the discrete Bragg angle  
 
     θB  =  sin−1 (λ/2dhkl) .  (25) 
 
The corresponding total diffraction angle for strong scattering is then  
 
     Θ’  =  θΒ + θΒ  =  2θB . (26) 
 
Note that, in a conventional diffractometer, (26) implies that the crystal sample must be 
rotated through angles θ, while the detector must be simultaneously rotated through angle 
Θ = 2θ.  Because θB must necessarily be ≤ � �, spacings dhkl < λ/2 are therefore not 
detectable and are said to be beyond the Bragg limit (the Ewald sphere is too small to 
intersect any reciprocal lattice points g > 0).  Regrettably, the “mirror” analogy has been 
assumed by many students (and too many of their mentors!) as proof of the condition 
(26) in a real-space derivation of the Bragg law.  In fact, it takes more than a page of 
vector algebra to prove that the incident and “reflected” angles are equal in the most 
general case.  This fact falls right out of the reciprocal-space Laue construction, however, 
because g lies along the normal to the diffracting planes, and the “Bragg” planes 
therefore bisect Θ at the Laue condition, yielding the Bragg condition (25).  Note, too, 
that even though atoms may not physically exist on identifiable higher-order planes (for 
example, on (200) “planes” of a simple monatomic cubic crystal which recur with half 
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the (100) unit-cell spacing), nevertheless the higher-order Bragg peaks (for this example, 
(200), (300), (400) etc. multiples) still occur, because the reciprocal lattice extends 
forever. 
 
 The derivation of the distribution of diffraction intensity I’(κ) in (21) assumes an 
infinite crystal, which is a clearly always an unrealized assumption.  We can nonetheless 
retain the simplicity of (21) for finite crystals, by defining a “shape” function 
 
    ⎧1   when r ≤ R  
   S(r)  =     ⎪   (27) 
    ⎩ 0  when r > R   
 
����� R(x,y,z) represents the spatial extent of the finite crystal.  The finite real lattice 
of the crystal may then be represented as the product of the infinite real lattice and the 
shape function 
 
    D(r)  =  D∞(r) • S(r) (28) 
 
whose Fourier transform is the convolution of the individual transforms 
 
   D (κ)  =  F  {D∞(r) • S(r)}  =  D∞(κ) * F  {S(r)} (29) 
 
Hence, the shape transform F  {S(r)} = S (κ)—the Fourier transform of the shape of the 
crystal—appears at every reciprocal lattice point, extending every reciprocal lattice point 
and consequently broadening the angular width ∆Θ’ = ∆2θB of each Bragg “peak” in a 
plot of I’(Θ) against Θ.  For a parallelopiped crystal with dimensions A,B,C, for example, 
the shape transform is the damped sine function (in fact, the Airy function) 
 
    S  (sx)  =  A−1 sin(2πsxx)/2πsxx  
    S  (sy)  =  B−1 sin(2πsyy)/2πs�� (30) 
    S (sz)  =  C−1 sin(2πszz)/2πszz 
 
with width at half amplitude given by A−1, B−1 and C−1 along the x, y and z axes passing 
through a reciprocal lattice point that misses intersecting the Ewald sphere by an amount 
s (called the deviation parameter) whose components are sx, sy and sz.  Crystallite 
dimensions can therefore be estimated by systematically measuring the size and shape of 
any broadened reciprocal lattice point, for example in a diffractometer by keeping the 
detector fixed at Θ = 2θB and varying θ by rotating the crystal alone (a “rocking curve”), 
or keeping the crystal fixed at θ = θB and scanning the detector angle Θ.  These sweeps 
provide different cuts through the extended reciprocal lattice point.  The corresponding 
intensity profiles enable the shape of the diffracting crystal to be deduced. 
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