Screenshot removed due to copyright restrictions. Source: Prof. Paolo Provenzano's website.

Term Paper Project

Enzymatic Targeting of the StromaCancer CellAblates Physical Barriers to Treatment2012of Pancreatic Ductal Adenocarcinoma (PDA)

Paolo P. Provenzano,¹ Carlos Cuevas,⁴ Amy E. Chang,¹ Vikas K. Goel,¹ Daniel D. Von Hoff,⁵ and Sunil R. Hingorani^{1,2,3,*} ¹Clinical Research Division ²Public Health Sciences Division Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA ³Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA ⁴Department of Radiology, University of Washington, Seattle, WA 98195, USA ⁵Clinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA

DOI 10.1016/j.ccr.2012.01.007

Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer British J of Cancer

P P Provenzano^{1,4} and S R Hingorani^{*,1,2,3}

¹Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; ²Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; ³Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA

2013

→ Glycosylation of "Core Protein (addition of sugar moieties)

Nature Reviews | Cancer

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Toole, Bryan P. "Hyaluronan: from extracellular glue to pericellular cue." Nature Reviews Cancer 4, no. 7 (2004): 528-539.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Provenzano, Paolo P. et al. "Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma." Cancer Cell 21, no. 3 (2012): 418-429.

Figure 1. Evolution of the Desmoplastic Reaction in Murine and Human PDA

(A-E) Masson's trichrome histochemistry shows robust collagen deposition (blue) at all stages of disease.

(F-J) Movat's pentachrome histochemistry reveals collagen (yellow), GAGs and mucins (blue), and their colocalization (turquoise/green).

(K–O) Histochemistry with HA-binding protein (HABP) reveals intense HA content beginning with preinvasive disease (PanIN).

(P–T) Activated PSC express α-smooth muscle actin (α-SMA) and are abundant in preinvasive (Q), invasive (R) and metastatic mPDA (S) and hPDA (T), but not in normal pancreata (P). *ac*, acini; *is*, islet; *d*, duct; *v*, venule; *h*, hepatic parenchyma; *, metastatic lesions. Scale bars, 25 µm. See also Figure S1.

6

Phase 1B: Open label (all patients receive PEGPH20+gemcitabine), dose escalation, safety and tolerability study to determine the safe dose of PEGPH20 to use in combination with gemcitabine in Stage IV previously untreated pancreatic cancer patients.

Phase 2: Randomized, double blind study to compare the effect of overall survival of gemcitabine plus PEGPH20 vs gemcitabine plus placebo in Stage IV previously untreated pancreatic cancer patients.

Condition	Intervention	Phase
Stage IV Pancreatic Cancer	Drug: Gemcitabine Drug: PEGPH20+ gemcitabine	Phase 1 Phase 2

Courtesy of ClinicalTrials.gov; in the public domain.

- Halozyme's FDA-approved, HYLENEX[®] recombinant human hyaluronidase, rHuPH20, is administered subcutaneously and temporarily and reversibly degrades HA to facilitate the absorption and dispersion of other injected drugs or fluids and for subcutaneous fluid administration.
- However, rHuPH20 acts only locally at the injection site, is rapidly inactivated in the body, and does not survive in the blood.
- An investigational PEGylated form of rHuPH20 (~60 kDa), PEGPH20 (~90 kDa), in under development by Halozyme to increase the half-life of the compound in the blood and allows investigation for intravenous administration.

PEGPH20 can't remove HA from Cartilage ©

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

(F) HA expression is specifically retained within <u>cartilage</u>
 (<u>ca</u>) and the joint space. *m*, bone marrow;
 ct, connective tissue; Scale bars, 50 μm.

HA expression in lung metastases from untreated (A) and PEGPH20treated (B) animals.

Figure 6. Gemcitabine+PEGPH20 Combination Therapy Decreases Metastatic Tumor Burden and Improves Survival

Survival curves from time of enrollment in control (Con; n = 16), Gem (n = 16), PEGPH20 (n = 15), and Gem+PEGPH20-treated KPC animals (n = 14).

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Provenzano, Paolo P. et al. "Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma." Cancer Cell 21, no. 3 (2012): 418-429. Figures from Box 2 removed due to copyright restrictions. Source: Jain, Rakesh K. "An indirect way to tame cancer." Scientific American 310, no. 2 (2014): 46-53.

Provenzano/Hingorani: <u>IFP</u> squeezes vessels shut

∫Dr. Jain's Argument∫

Jain: <u>Solid Stress</u> squeezes vessels shut, porous or not!

© Scientific American. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Jain, Rakesh K. "An indirect way to tame cancer." Scientific American 310, no. 2 (2014): 46-53. "Diffusion is driven by concentration gradients between intravascular and interstitial compartments; ...Convection is driven by pressure gradients composed of hydrostatic and oncotic components"

Source of profoundly elevated fluid pressures and vascular collapse in PDA?? :

HA organizes a hydrogel containing "immobilized fluid" ...that also has an elastic modulus....a property of solids; Gel has "fluid pressure, colloid osmotic pressure caused by Donnan equilibrium....." Provenzano/Hingorani: <u>Donnan</u> also increases <u>IFP</u> (porous or not) !! Jain: <u>Solid Stress</u> squeezes vessels shut, porous or not!

© Scientific American. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Jain, Rakesh K. "An indirect way to tame cancer." Scientific American 310, no. 2 (2014): 46-53.

Examining <u>Starling's principles</u> of fluid flux reveals that IFP need not be limited by microvascular pressure. The Staverman-Kedem-Katchalsky solute transport equation formally defines <u>fluid flux</u> (J_F) based on Starling's principles as:

$$J_F = L_{\rho} \cdot A \left[(p_v - p_i) - \sigma (\pi_v - \pi_i) \right]$$

in which L_{ρ} is the hydraulic conductivity; A is the surface area of the vascular bed; p_v and p_i are the hydrostatic pressures in the vessels and interstitium, respectively; π_v and π_i are the oncotic pressures in the same respective spaces; and σ is the reflection coefficient of the endothelium (Kedem and Katchalsky, 1961).

Jain and colleagues assume π_i is always lower than $\pi_{v...}$

From Letter-Reply DelGiorno et al., Cancer Cell 2014

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: DelGiorno, Kathleen E. et al. "Interstitial pressure and vascular collapse in pancreas cancer: fluids and solids, measurement and meaning." Cancer Cell 26, no. 1 (2014): 16.

Calculating total interstitial fluid pressure (IFPtotal)

The majority of interstitial fluid is <u>immobile(?)</u>. Hyaluronan, or hyaluronic acid, HA, a naturally occurring, megadalton polyelectrolyte avidly binds water (?) and contributes extensively to both hydrostatic and oncotic fluid pressures in the interstitium (Guyton et al., 1971; Ogston, 1966; Tanford, 1961).

Building on Starling's insights, a more complete formula for interstitial fluid pressure that takes into account both the freely mobile and less mobile fluid phases is:

$$IFP_{total} = p_v - \sigma (\pi_v - \pi_i) + P_{immobile} + \Pi_{immobile}$$

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: DelGiorno, Kathleen E. et al. "Interstitial pressure and vascular collapse in pancreas cancer: fluids and solids, measurement and meaning." Cancer Cell 26, no. 1 (2014): 16.

$$IFP_{total} = p_v - \sigma (\pi_v - \pi_i) + P_{immobile} + \Pi_{immobile}$$

- *P_{imm}* is comprised of an elastic recoil component from structural elements in the interstitium, together with the electrostatic repulsion of negative charges on HA that contributes to its tendency to expand or swell. This term includes pressure exerted from the collagen network in tension as it resists the expansion of hydrated HA.
- *I*¹ imm is defined largely by the Donnan potential, the unequal distribution of diffusible cations as a result of non-diffusible negative charges, plus a minor component from van't Hoff forces. Together, these terms represent a complete depiction of interstitial fluid pressures (Figure S1H)

- Thus, it is important to remember that in addition to resisting compression, HA also expands and this swelling pressure stresses the collagen fibrils, which are loaded in response through cell contraction in an effort to maintain tensional homeostasis.
- We propose, therefore, that fibrillar collagen represents an additional target to decrease transmitted fluid pressure, and hypothesize further that its removal or inhibition would cause an incremental or stepwise drop in pressure rather than complete normalization.

Astronauts gain 1-2 inches in <u>height</u> during space flight: <u>swelling of the</u> <u>intervertebral discs</u> <u>under 0-gravity</u>:

"swelling pressure" of highly charged ECM: aggrecan GAG chains

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

"Double Layer repulsion: Nano "DLVO Theory"

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 4.14 The potential profile for plane parallel interacting double layers. Local $E_x = -(d\Phi/dx) \rightarrow$ "double layer repulsion"

electrical stress: $\sigma^{elec} \sim (\sigma_d E) \propto E(x)^2$

In Equilibrium, the SUM of the [electrical + osmotic + "elastic recoil"] stresses = 0

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Astronauts gain 1-2 inches in <u>height</u> during space flight: <u>swelling of the</u> <u>intervertebral discs</u> <u>under 0-gravity:</u>

"swelling pressure" of highly charged ECM: aggrecan GAG chains

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

 \odot source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Will Kirk. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Electroneutrality (with approximations):

$$\overline{\rho}_{m} + F(\overline{C}_{Na} - \overline{C}_{Cl}) = 0$$

Term Paper: **π^{os} in PDA**

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Provenzano, Paolo P. et al. "Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma." Cancer Cell 21, no. 3 (2012): 418-429.

Electroneutrality (with approximations):

$$\overline{\rho}_{m} + F(\overline{C}_{Na} - \overline{C}_{Cl}) = C$$

...Convection is driven by pressure gradients composed of hydrostatic and oncotic components"

HA organizes a hydrogel containing "immobilized fluid"that also has an elastic modulus....a property of solids;

...and gel has "fluid pressure"; gradients in pressure drive convective fluid flow Provenzano/Hingorani: <u>Donnan</u> also increases <u>IFP</u> (porous or not) !! Jain: <u>Solid Stress</u> squeezes vessels shut, porous or not!

© Scientific American. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Jain, Rakesh K. "An indirect way to tame cancer." Scientific American 310, no. 2 (2014): 46-53.

Gels are also Poroelastic ©

Cancer Research 2000

Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors¹

Paolo A. Netti,² David A. Berk,³ Melody A. Swartz,⁴ Alan J. Grodzinsky, and Rakesh K. Jain⁵

Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 [. D. A. B., M. A. S., R. K. J.], and Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 [A. J. G.]

ABSTRACT

- The extracellular matrix may contribute to the drug resistance of a solid tumor by preventing the penetration of therapeutic agents. We measured differences in interstitial resistance to macromolecule (IgG) transport in 4 tumor types and found an unexpected correspondence between <u>transport resistance and the</u> <u>mechanical stiffness</u>.
- The interstitial diffusion coefficient of IgG was measured in situ by FRAP. <u>Tissue elastic modulus and hydraulic permeability</u> were measured by <u>confined compression of excised tissue (using</u> poroelastic theory).
- Conclusions: collagen influences tissue resistance to macromolecule transport, possibly by binding and stabilizing the GAG component of ECM ...findings suggest a new method to screen tumors for <u>resistance to</u> <u>macromolecule-based therapy</u>.... Moreover, collagen & collagenproteoglycan bonds are potential targets of treatment to improve delivery.

Text from article removed due to copyright restrictions. Source: Biot, M. Av. "Theory of elasticity and consolidation for a porous anisotropic solid." Journal of Applied Physics 26, no. 2 (1955): 182-185.

Kinetics of swelling of gels

Toyoichi Tanaka and David J. Fillmore

(J Chem Phys, 1979)

Gel displacement *u* satisfies a poroelastic diffusion equation!

$$\frac{\partial u}{\partial t} = D_{\text{gel}} \frac{\partial}{\partial r} \left[\frac{1}{r^2} \left(\frac{\partial}{\partial r} (r^2 u) \right) \right]$$

$$\tau_{\rm gel} = \frac{L^2}{\pi^2 D_{\rm gel}}$$

"D_{gel}" = "H" • "k"
H = (2G + λ) gel elasticity
k = gel hydraulic permeability

© AIP Publishing LLC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Tanaka, Toyoichi and David J. Fillmore. "Kinetics of swelling of gels." The Journal of Chemical Physics 70, no. 3 (1979): 1214-1218.

(Text, page 260-261)

From macro- to microscale poroelastic characterization of polymeric hydrogels *via* indentation[†] Soft Matter 2012

33

Z. Ilke Kalcioglu,[‡]^a Roza Mahmoodian,[‡]^a Yuhang Hu,^b Zhigang Suo^b and Krystyn J. Van Vliet^{*ac}

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Kalcioglu, Z. Ilke, Roza Mahmoodian, Yuhang Hu, Zhigang Suo, and Krystyn J. Van Vliet. "From macro-to microscale poroelastic characterization of polymeric hydrogels via indentation." Soft Matter 8, no. 12 (2012): 3393-3398.

© American Chemical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Quinn, Thomas M., and Alan J. Grodzinsky. "Longitudinal modulus and hydraulic permeability of poly (methacrylic acid) gels: effects of charge density and solvent content." Macromolecules 26, no. 16 (1993): 4332-4338. "1-D Confined Compression" measurements:

- Poroelastic: material behavior "H" and "k"
- Tissue Swelling and Swelling Pressure

© Sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems $\mathsf{Fall}\ 2015$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.