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Cycle to Cycle

Manufacturing Process Control


David E. Hardt* and Tsz-Sin-Siu* 

Abstract-- Most manufacturing processes produce parts 
that can only be correctly measured after the process cycle has 
been completed. Even if in-process measurement and control 
is possible, it is often too expensive or complex to practically 
implement. In this paper, a simple control scheme based on 
output measurement and input change after each processing 
cycle is proposed. It is shown to reduce the process dynamics 
to a simple gain with a delay, and reduce the control problem 
to a SISO discrete time problem. The goal of the controller is 
to both reduce mean output errors and reduce their variance. 
In so doing the process capability (e.g. Cpk) can be increased 
without additional investment in control hardware or in-
process sensors. This control system is analyzed for two types 
of disturbance processes: independent (uncorrelated) and de-
pendent (correlated). For the former the closed-loop control 
increased the output variance, whereas for the latter it can 
decrease it significantly. In both cases, proper controller de-
sign can reduce the mean error to zero without introducing 
poor transient performance. These finding were demon-
strated by implementing Cycle to Cycle (CtC) control on a 
simple bending process (uncorrelated disturbance) and on an 
injection molding process (correlated disturbance). The re-
sults followed closely those predicted by the analysis. 

Index Terms-- Manufacturing Process Control, SPC, Dis-
crete System Control, Variance Reduction 

I. INTRODUCTION 

M ANUFACTURING processes can be controlled in a 
number of different ways, ranging from highly so-

phisticated, high bandwidth machine and process control 
systems, to rather passive process monitoring. What distin-
guishes "process control" from automation or machine con-
trol is the inclusion of the actual material modification step 
in the control loop. Also of critical importance is the fre-
quency of control. To achieve high frequency control in-
cluding the process usually involves difficult sensing and 
process modeling (see Hardt [1]). As a result the vast ma-
jority of process control in the discrete parts industry falls 
into two distinct categories 
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•	 High bandwidth control of machine state variables such 
as displacement, force, pressure or temperature. (ma-
chine state control) 

•	 Output sampling with process diagnostics based on 
measured process statistics. Statistical Process Control 
(SPC) 

Examples of intermediate levels of control such as 
material state control (e.g. direct feedback of material 
stress, strain or temperature) are very unusual. Even less 
common are examples of direct process output feedback, 
such as in-process part geometry feedback. 

A simple block diagram of a process (see Fig. 1) em-
phasizes these distinctions. It also shows clearly that any 
control other than output feedback neglects the influence of 
ubiquitous process disturbances. The most common of 
these is the high likelihood of material property variations. 

EQUIPMENT MATERIALCONTR. 

Equipment loop 

Material loop 

Process output loop 

Figure 1 Three Levels of Feedback Process Control 

The obvious reason for this dilemma is the cost and 
difficulty of making in-process measurements on a material. 
Even in the presence of such measurements, the resulting 
control system design requires a model of a process that is 
highly non-linear, and changing rapidly as new workpieces 
are introduced. 

As a result we see a large gap between the high band-
width, highly response methods that do not actually control 
the process output, and the very low bandwidth methods of 
statistical process control (SPC). 

This paper addresses this problem by conceding that 
output measurements can only be made after the process 
cycle is complete. While this immediately limits the band-
width and variance reduction performance of the system, it 
makes it a nearly universally applicable approach. This 
performance - applicability tradeoff is examined for two 
cases: a process contaminated with normally distributed 
identically distributed independent noise (or uncorrelated 
noise) and a similar noise process with some degree of cor-
relation. It is examined both analytically and with experi-



ments. The latter involved processes with uncorrelated and 
with correlated noise. 

II. BACKGROUND 

One of the earliest attempts to provide a formal intro-
duction to discrete feedback control in manufacturing was 
by Box and Kramer [2]. They argued that statistical proc-
ess control and automatic process control are similar in na-
ture but originate from different industries. SPC is devel-
oped for the “parts” industry, while APC is designed for the 
“process” industry. The two industries have different goals. 
The parts industry wants to achieve the smallest possible 
variation while the process industry wants the highest yield. 
Different disturbances are associated with the two indus-
tries. The parts industry has small variations in material 
properties while the process industry has higher sensitivity 
to external disturbances such as temperature and pressure. 
Also, the cost of adjustment is high for the parts industry 
relative to the process industry. The authors then point out 
that the dividing line between the two industries is fading. 

Based on some of the arguments and theories developed 
by Box and Kramer, Sachs et al. [3] presented one of the 
first applications of discrete feedback control to manufac-
turing process. A real-time run-by-run (RbR) controller is 
implemented for a silicon epitaxy process to reduce vari-
ability. Three modes of operations are used to accommo-
date the common types of disturbances: 
•	 Optimization mode using sequential design of experi-

ments to locally optimize the process 
•	 Rapid mode to quickly adjust the input to correct for 

large step disturbances (>2µ) 

•	 Gradual mode to slowly adjust for slow drift distur-
bances (1µ /100 runs) 

An EWMA filter is used to estimate the intercept of the 
linear model of the process Experiments are performed on 
an Epitaxy Reactor and they show a 2.7 times improvement 
in the process capability, Cpk, in the gradual mode. The re-
sults also show the ability to reject step disturbances 
quickly in the rapid mode. 

The authors also discuss the effect on the output if a 
more realistic probabilistic model is used: 

Yt = α + β ⋅ xt + κ ⋅σ ⋅ t + et 

where κ ⋅σ ⋅ t  represents a drift (ramp) disturbance, κ 
determines the slope of the ramp disturbance and et  is a 
white noise sequence with mean of zero and standard de-
viation of σ. The result of statistical analysis shows that the 
asymptotic mean squared deviation (MSD), which is the 
expected value of the squared of the difference between the 
ouput Y×  and the target T, has the following expression: 

MSD 
= 

2b / β 
+ ⎛κb / β⎞ 

2 

(1)
σ 2 2b / β − w ⎝ w ⎠ 

The ratio is always greater than zero, which indicates 
that the MSD is greater than σ. One limiting case of the 

equation is when κ=0 and b=β. Equation (1) becomes 2/(2-
w), which is minimized at w=0. As a result, if the process 
has no ramp disturbance component, it is best to simply 
leave the process alone in open loop (with system gain, w/b, 
equal to zero). 

Vander Wiel and Tucker [4] apply the concept of CTC 
feedback control to a manufacturing process. It is based on 
experiments of controlling intrinsic viscosity from a par-
ticular General Electric polymerization process. It reiterates 
many of the equations and concepts proposed by Box and 
Kramer [2]. The main contribution of this paper to the field 
is the four-step application guideline that the authors pro-
posed: 
•	 Develop a time series transfer-function model of the 

process, including process dynamics caused by meas-
urement delays. 

•	 Design a suitable controller based on the model of the 
process. 

•	 Put in SPC charts to monitor the closed-loop process to 
detect any unexpected events happening. 

•	 If an SPC alarm signals, search for assignable causes 
and remove it if possible. 

Smith and Boning [5] present an extension to the Expo-
nentially Weighted Moving Average (EWMA) controller to 
dynamically update the EWMA weights via an Artificial 
Neural Network to provide better control. The effects of 
EWMA weights on the responses of systems with different 
disturbances are discussed, and the determination of opti-
mal EWMA weights using disturbance state mapping is 
also presented. 

The authors believe that the performance of a regular 
EWMA controller is highly dependent on the choice of the 
EWMA weights, and the ability to dynamically update the 
EWMA weight value is important for systems in which the 
process model does not accurately represent the true proc-
ess dynamics. Simulation results show an improvement 
ranging from 9% in small drift and high noise processes to 
38.7% in high drift and low noise processes. 

Del Castillo and Hurwitz [6] discuss the concepts be-
hind RbR control with particular emphasis on EWMA 
based controllers. The authors point out that this type of 
controller is well suited for processes where the cost of an 
output being off-target is high and where the cost of control 
action is relatively inexpensive. They also believe that the 
run-by-run control techniques are well suited for short-run 
discrete part manufacturing processes. 

Limitations of these controllers include lagged response 
and sluggish performance. A self-tuning (ST) controller is 
presented to rectify some of these problems by separating 
the estimation problem from the control problem. The type 
of controller discussed is called “indirect ST” controller 
where the control equation is derived and then parameter 
estimates are substituted for the true values. Simulation 
results are presented and they shows that the ST controller 
could provide more robust control against a wider variety of 
distributions and system configurations than could certain 
EWMA controllers found in the literature. 



  

 

Del Castillo [7] presents a self-tuning multiple-input 
multiple-output controller for run-by-run control. A sensi-
tivity analysis is presented to show the performance of the 
controller under various simulated system noise combina-
tions. 

Valjavec and Hardt [8] is one of few research works re-
lated to CtC feedback control that are not in the process 
industry. It provides validation that CtC control can be ap-
plied effectively to discrete parts manufacturing processes. 
The authors develops a self-tuning feedback shape control 
algorithm for stretch forming on a reconfigurable forming 
tool. Based on empirical estimation results of process pa-
rameters from calibration trials, a system identification 
strategy called the deformation transfer function is used to 
recursively estimate the tool shape required to achieve de-
sired part shape. Stability is achieved for the control strat-
egy on laboratory and full-scale experiments. 

In addition, the same control methodology is used to 
compensate for the combined shape distortions in a series 
of manufacturing operations (stretch forming, chemical 
milling and trimming). 

III. PROCESS MODEL FOR CYCLE TO CYCLE CONTROL 

The consequence of sampling the output only after 
completion of the process leads to a very simple process 
model. If we assume that a typical discrete part manufac-
turing process starts with a new workpiece and then applies 
directed energy on the workpiece during the cycle to Tc, 
then by definition the process transients are over by the end 
of the cycle and no more change in the workpiece occurs. 
This allows the process to be modeled as a simple gain re-
lating one or more inputs to the measured output. However, 
since we apply this control input at the start of the cycle and 
must wait the full cycle to measure the product, there is also 
a delay of at least one Tc. Any further delays will be attrib-
uted to measurement or the controller itself. 

Thus the process model becomes: 

yk = K puk −1 (2) 

where yk is the current process output and uk-1 is the control 
input at the prior cycle. Thus the process has no apparent 
dynamics (other than the delay) when viewed after each 
cycle. 

The essential control problem then arises from the fact 
that this process gain in fact is stochastic, owing primarily 
to material variation from workpiece to workpiece. It can 
also depend upon random variations in processing machine 
operation. Deterministic changes can also occur as material 
or machine changeovers occur. 

Accordingly, this model must be augmented to include 
this random component. However, owing to the difficulty 
of analyzing closed-loop systems with variable gains, espe-
cially if they are stochastic, we instead model this effect as 
additive noise. Thus the process model becomes: 

yk = K puk −1 + dk 
(3) 

where d is a noise sequence that is either correlated or un-
correlated in time. 

If we transform this system using the Z-transform, Eqn 
4 becomes 

Y (z) = K pz −1U (z) + D(z) (4) 

IV. MEASURES OF PERFORMANCE 

Before proceeding to controller design, it is important to 
set the expectations of this system. For manufacturing 
processes controlled at this level of granularity, there are 
some well-established measures of performance based on a 
statistical model of the process. The most common is the 
process capability, which measures the variation of the 
process relative to the design specifications. In particular 
the metric 

⎛ T + − µ µ −T − ⎞ 
C pk = min

⎝⎜ 3σ 
,

3σ ⎠⎟ 

measures the deviation of the mean value (µ) of the process 
from the upper or lower tolerance limits T+ and T-, normal-
ized by the variance of the process (3σ). (See Devor et al 
[9], e.g.) Thus we can measure the performance of our 
CtC control system on the basis of the distance of the mean 
or steady-state output from the target value (T) and the 
process variance σ. 

It is also possible to use Taguchi's Quality Loss Func-
tion (Devor et. al. [9]) to derive an expected cost of poor 
performance: 

E[ L] = Var[ x] + {E[ x] − T } 2 

= σ x 
2 + (µ −T )2 

where L is the quality loss (usually expressed in cost fig-
ures). Here again it is clear that the objective is to mini-
mize variance and mean distance from the target. In 
Siu[10] this cost function is used to develop an optimal CtC 
control scheme that minimizes this expected loss. 

V. CYCLE TO CYCLE CONTROLLER ANALYSIS 

With the above process model (Eqn 4) we can proceed 
to design various cycle to cycle (CtC) controllers. It is then 
possible to assess the effect on steady-state error and noise 
variance reduction for each case. 

In all cases the control system will have the form shown 
in Fig. 2. 



 

D(z) 

Gc(z) z-1 Kp 

Y(z)R(z) 

Fig. 2 Basic CtC Control Loop 

The controller Gc (z) will (at this time) be one of two 
choices: 

Proportional Gc (z) = Kc 

Integral Gc (z) = Kc z/(z-1) 

A. Stability and Characteristic Response 

The plant model 

Gp (z ) = z −1K p (5) 

is the same for all processes we expect to consider, the plant 
reduces to a simple pole at the origin. With proportional 
control, then, we can show that the stable range of loop 
gains is given by 0 ≤ Kc K p ≤ 1. In addtiion, the expected 
response will be oscillatory for all stable gain as the closed-
loop root is on the negative real axis of the z-plane. 

The integral controller adds a pole at +1 and cancels the 
plant pole with a zero at the origin. In this case, the stable 
range is extended to 0 ≤ Kc K p ≤ 2 and for 0 ≤ Kc K p ≤ 1 
the response will be non-oscillatory with a settling time that 
decreases as KcK p → 1., which corresponds to the closed-
loop root approaching the origin of the z-plane. 

B. Steady- State Error 

Recalling the performance measures defined above, the 
ability of the CtC system to minimize the target dimension 
T and the process mean µ is critical. For a stationary dis-
turbance modeled as a normal process with constant mean 
and constant variance, this error can be characterized by the 
steady-state step input and step disturbance error for the 
closed-loop system. 

For the proportional control there will be a finite step 
input and step disturbance error given by 

1 
= (6)ss step 1+ K K 

e
c p 

Since stability limits KcK p ≤ 1 we can expect large er-
rors for this controller. 

The integral controller will of course have zero steady-
state error to both step inputs or disturbances regardless of 
the loop gain. 

C. Variance Reduction 

The above are simple classical results that suggest supe-
rior performance of the integral controller. Of greater con-
cern here, however, is the ability of the CtC control system 
to reduce the variance of the additive output disturbance. 
For this analysis we must first more carefully consider our 
disturbance model. 

As previously discussed, two models are appropriate for 
most manufacturing processes. For processes with fast 
process dynamics, and with workpiece material changing 
on each cycle, the events in a disturbance sequence must be 
independent. For processes with slower dynamics (primar-
ily thermal dynamics) there may be some dependence from 
cycle to cycle. 

The uncorrelated noise is simply modeled as a normal 
identically distributed independent (NIDI) process (or a 
gaussian white noise process) with mean of µ and variance 

σ2 . To simulate a dependent or correlated disturbance, this 
white noise is "colored" with a simple first order filter: 

1 − p
G f (z ) = 

z − p 

where p =0.8 is chosen for all simulations herein. 

1) Variance ratio: White noise, Proportional Control 

In this case, since each new noise sample is independent 
of the last, and since the process has at least one time step 
delay, we expect to see the variance ratio start at 1 and in-
crease with gain. 

An analysis of this problem is found in Siu[10], who 
considers not only the steady state variance ratio, but the n 
result as well. From that analysis it can be shown that the 
variance: 

σ 2 1− K 2n 
y n (7)= 

σ 2 1− K 2 

where σ y
2= process output variance at time step n 

n 

σ2  = noise variance 

K = loop gain (KcKp) 

From this equation it is apparent that for any value of K 
the variance of the disturbance will be amplified, as shown 
in Fig. 3 
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3) Variance ratio: Uncorrelated Disturbances with In-
12.000 

Analytical 

Matlab simulation 

tegral Control 
The change to an integral controller has a marked effect

10.000 
on improving steady-state or mean error behavior, but it 

σy/σ cannot be expected to reduce variance in the uncorrelated8.000 
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Figure 3 Proportional Control Variance Ratio as n ->∞; Uncorre-
lated Disturbances 

disturbance case any more than in the proportional case. 
However, since the range of stable gains is great, and tran-
sient behavior does improve with gain, it is important to 
determine the new variance ratio. Again, Siu[10] has per-
formed this analysis with the result: 

σ 2
1− (1 − K)2( n−1) 

yn 

σ 2 = 1 + K ⋅ 
2 − K 

(8) 

which is plotted in Fig.5 

25.000 

The transient behavior of Eqn 7 shows an exponential-like 20.000 

rise that reaches steady state at n>12. σy/σ 
15.000 

2) Variance ratio: Correlated Disturbances with Pro-
portional Control 10.000 

With a correlated disturbance sequence, there is some 
expectation of variance reduction, since a measure of state 5.000 

dependence exists between successive values of the distur-
bance. Closed-form analysis of the case of correlated se- 0.000 

Time Series Analysis 
(n=20) 

Matlab simulation 

quences is tedious and is not discussed here. However, a 
simulation of this situation was performed using MATLAB. 
In this case the CtC system was run for ~5000 transients at 
each gain level and the average output variance calculated. 
The result is shown in Fig. 4, and there is indeed a reduc-
tion in variance over the range K ∈0,0.8 . In fact, the in-
crease in the variance ratio after K = 0.6 can be attributed to 
the increasingly oscillatory response of the underlying sys-
tem, rather than to any steady state noise amplification. 
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Figure. 5 Integral Control Variance Ratio as n ->∞; Uncorrelated 
Disturbances 

Here it is noteworthy that variance amplification is mi-
nor until K>1, implying a reasonable range of working 
gains for both transient response performance and variance 
reduction. However, as gains increase beyond that point, 
the amplification becomes extreme. 

Although Eqn 8 indicates a time dependence for the 
variance ratio, in fact the transients are over by n=6 for all 
ranges of gain, and are of little significance here. 

4) Variance ratio: Correlated Disturbances with Inte-
gral Control 
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of this paper, but Box and Luceno[11] have analyzed the
0.800 case and show the expected variance reduction. Again us-
0.600 ing a MATLAB simulation, we can see the large range of 

useful variance reduction in Fig. 60.400 
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Figure 4 Proportional Control Variance Ratio as n ->∞; Correlated 
Disturbances 
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Figure 6. Variance Ratio for Correlated Disturbances ; Integral 
Control 

D. Summary of CtC Analysis 

In this section we have defined a simple process and 
disturbance model that captures the essential input-output 
properties of myriad manufacturing processes when sam-
pled cycle to cycle. From this model we define two classes 
of processes: those with uncorrelated disturbances and 
those with correlated disturbances. It is shown that vari-
ance reduction for the former is not possible whereas for the 
latter it is. In addition, it is shown that an integral con-
troller is superior to proportional control of the CtC control 
loop, primarily owing to its superior error performance. 

From this analysis we can also conclude that CtC con-
trol, using an integral control law and an appropriately cho-
sen loop gain, can center a process on the target value, 
thereby eliminating mean errors. For a process with uncor-
related disturbances, this centering is done at the cost of a 
slight increase in variance. However, for processes with 
some correlation in the disturbance, the mean error can be 
eliminated and variance reduction of up to 50% can be re-
alized. 

In either case it is important to realize that process ca-
pability (Cpk) can be increased for processes subject to sig-
nificant mean drift or shifts, even if they have uncorrelated 
random disturbance components. 

These results are obvious once the model is developed 
and the problem posed. However, it remains to examine 
both the validity of the model and the resulting closed-loop 
system performance. This is presented in a pair of experi-
ments designed to look at the two classes of processes: un-
correlated and correlated. 

VI. EXPERIMENTS 

To test the results of Section V a series of experiments 
were performed to implement CtC control. Two processes 
were chosen to examine different types of process physics 
and disturbances. 

A. Uncorrelated Disturbance Process: Sheet Metal 
Bending 

The simple process of bending is commonly used for 
many simple sheet metal products. It is well known to be 
sensitive to material property variations, and is easily im-
plemented in a lab setting. For the tests presented here, a 
simple lab scale 3-point bending apparatus was used, as 
shown in Fig. 7. The tools are mounted in a simple engine 
lathe, and the punch is manually moved into the material. 
The key input is the displacement of the punch Yp into the 
material and the output is the included angle of the resulting 
part. The input was measured by the vernier on the tail-
stock of the lathe (with a resolution of 0.001 in.), while the 
angle is measured with a machinist protractor (with a reso-
lution of 5 minutes.)

Workpiece 

Punch 

Die 

Yp 

Figure 7: Setup for Bending Experiments 

1) Process Gain 
The basic process model is a gain relating the punch po-

sition to the output angle. This gain was determined with a 
series of open-loop experiments on three materials: 

• 0.025in thickness steel 
• 0.020in thickness steel 
• 0.032in thickness aluminum 

These choices allow introduction of different yield 
stresses, elastic moduli and thicknesses, all of which 
strongly affect the resulting process gain. 

Although the process is known to be non-linear, the 
model was developed using tests in a small range of output 
angles so an equivalent linear gain could be determined. A 
typical result is shown in Fig. 8 
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Figure 8. Gain Determination for 0.025 Steel workpiece 

The gains found are shown in Table 1 

Material Gain Kp  (deg/in) 
0.025 Steel 151 
0.020 Steel 143 
0.032 Aluminum 144 

Table 1: Process Gains for Bending 

2) Closed-Loop Cycle to Cycle Control 
To implement CtC control, the angle of each part pro-

duced was measured and used to determine the next con-
troller output based on the angle error. This represents the 
one time step delay of the system; the control action is a 
new punch penetration for the next forming cycle, 

To assess the disturbance variance, it was first necessary 
to perform a number of open-loop runs using fixed punch 
depths. This was done for each material with 20-30 runs 
for each test. From these runs it was determined that the 
open-loop variance was dependent on both material and 
punch depth. Typical results are shown in Table 2 (The 
basic measurement repeatability was found to be 0.1°.) 

Material Standard Deviation 
0.02 Steel 0.161° 

0.025 Steel 0.200°· 
0.32 Aluminum 0.368° 

Table 2: Typical Standard Deviation based on 15-30 Open-Loop 
Tests 

A typical experiment implementing closed-loop control 
is shown in Fig. 9. Here the process is run open-loop for 
many cycles, then CtC proportional control with K=0.7 is 
implemented. As expected, the press variance goes up visi-
bly, but the process moves closer to the desired mean value 
of 35 (although it was at 35.14 open-loop; not a great dis-
tance). 

36.5 

36 

35.5 

35 

34.5 

34 

33.5 

0 10 20 30 40 50 60 70 80 90 100 

Run number 

Open-loop Closed-loop 

Figure 9 Proportional CtC Control of Bending. The target angle 
was 35°. 

Tests were performed for both proportional and integral 
control, and transient as well as steady state results were 
recorded. Some results are shown in Table 3 

Controller Gain Variance 
Ratio 
(Exper.) 

Variance 
Ratio 
(theoretical) 

P 0.7 1.66 1.96 
P 1.0 "large" Marginally 

stable 
I 1.8 10.2 10.0 
I 0.2 1.015 1.11 

Table 3 Measured and Theoretical Variance rations for Different 
Controllers and gains 

3) Mean Disturbance Rejection 
To simulate a step shift in the mean value of the distur-

bance, a sudden change from 0.025in thick steel to 0.020in 
thick was introduced during CtC operation. This change in 
thickness will cause a 7.65° shift for a fixed punch dis-
placement. The process was taken through the transient and 
the settling time as well as final steady-state error recorded. 
As can be seen from Table 4, the results were in compliance 
with the expected values. for both P and I controllers. 

Controller Gain ess 

exper. 
ess 

theo. 
ts 

exper. 
ts 

theo. 
P 0.7 4.65 4.29 10 9 
I 0.5 0 0 5 5 

Table 4 Step Disturbance Rejection (Change of thickness from 
0.025 to 0.02 in steel) 

The transient results for the I control case with K = 0.5 are 
shown in Fig. 10 

A ramp disturbance was also introduced by adding an 
offset to the punch position on each cycle. When done at a 
rate of 1.51°/cycle, it produced divergent results of the P 
control (as expected) whereas the I controller settled to a 



finite error of 3°, exactly as would be predicted for a loop 
gain of 0.5. 

4) Conclusions: Bending Experiments 
The experiments with bending have shown close con-

formance to the predictions for a process with uncorrelated 
disturbances. They have also shown the deterministic dis-
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Figure 10 Effect of Thickness Change on Integral CtC with K=0.5 

turbance (step and ramp) properties of the I controller, and 
have also confirmed the stability limits predicted by the 
simple discrete time analysis for this time delay system. 

B. Correlated Noise: Injection Molding 

For the second experiment, injection molding was cho-
sen for several reasons. First, it is a process dominated by 
thermal time constants, and can be expected to display 
some correlation between cycles. It is also a far more com-
plex "parallel" process that stands at the opposite spectrum 
in process type from bending. Finally, it typically produces 
complex parts with one or more critical dimension, and has 
some well identified input variables. 

The part formed was a simple cylinder of ABS and the 
outer diameter was chosen as the output. (See Fig. 11) 

Figure 11 ABS Cylinder Part Forming Using Injection Molding 

In contrast to bending, the first problem with injection 
molding is determining which input to use for the experi-
ments. The candidates include injection nozzle tempera-
ture, hold time (after injection and packing) and injection 
speed. A 32 experiment was designed to determine which 

of these was most sensitive and it was found that hold time 
was the best input for these test. 

1) Process Gain Determinations 
Again a series of open-loop experiments were per-

formed to determine the process gain relating output dimen-
sions (in) to input hold time (sec). Hold time could be re-
solved to 0.01 sec on the machine controller and the vernier 
caliper used to measure the parts had a resolution of 0.0005 
in. 

From a series of 24 open-loop tests all run after the 
process had reached thermal equilibrium, the process gain 
was found to be -1.39 x 10-4. This means that for the full 
range of hold times (0-30 sec) we expect only a 0.004in 
change in part dimension. This is to be expected, however, 
since the main determinant of part dimension is the tool 
itself, and this experiment is aimed a making small correc-
tions to the basic output dimension. 

2)  CtC Experiments 
As before, the open-loop variance was first character-

ized and then used as a baseline for gauging controller vari-
ance reduction. Both P and I controllers were again used, 
and part dimension feedback was done after each forming 
cycle. However, owing to the long cooling time of the 
parts, they were measured "hot" out of the mold. The 
change in dimension was found to be deterministic and 
produced a fixed offset that did not influence the variance 
of the final products. 

For the P controller, we expect a reduction in variance, 
provided the process has some correlation in the distur-
bances. In fact, a typical closed-loop run (see fig. 12) 
shows clearly both the variance reduction and error reduc-
tion properties of the controller. 
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Figure 12 CtC Controller Effect for Injection Molding (P control 
K = 0.5) 

Over a range of reasonable gains for the P controller it 
was found that the variance ratio was always less than one. 
For example, when K = 0.2 the variance ratio was 0.74 and 
when increased to 0.5 it decreased to 0.39. This result fol-
lows closely that shown in Fig. 3 (value of 0.7 and 0.5). 
These results indicate a significant degree of correlation in 



the disturbance, with the resulting variance reduction using 
CtC control. 

Likewise with the I controller a similar variance reduc-
tion was found (e.g. for K=0.2 the variance ratio was 0.4 
versus a predicted value of 0.6 from Fig. 4). The error 
properties of the in controller were harder to assess for this 
process owing the limited process latitude, and during most 
step disturbance experiments, the process saturated at the 
0.004in change limit, precluding further improvement using 
hold time as the input. 

3) Process Correlation 
Since distinct variance reduction was observed for the 

injection molding process the CtC control analysis suggests 
that the process disturbances must be correlated, that is 
showing some state dependence from cycle to cycle. To 
test this finding, the Autocorrelation for the process output 
when run open-loop was determined. For comparison, the 
autocorrelation for the bending case was auto calculated. 
These results are shown in Fig. 13. From these results it 
appears that there is strong correlation in the 1-5 cycle time 
range for injection molding, but no real evidence of any 
correlation in the bending case. This is of course consistent 
with the variance increase noted in the CtC control for 
bending. 
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Figure 13 Autocorrelation comparison between open-loop process 
(left), Process (right) 

VII. CONCLUSIONS 

The concept of Cycle to Cycle Control has been intro-
duced as a simple means of improving process capability 
using linear discrete time control theory. A simple process 
model results from assuming that data and control actions 
can only be taken after the process cycle is complete. Sta-
bility limits for the system can be quickly established, and 
mean error and variance reduction relationships developed. 
The key observations are: 

Regardless of the nature of the output randomness, the 
mean error can be reduced, producing a more closely cen-
tered process. The variance of the process is either slightly 
increased (for uncorrelated disturbances) or decreased by a 
significant amount (correlated disturbances) by the CtC 
control. For both cases the process capability can be im-
proved over the open loop (typical of SPC) case. 

These results were born out by using CtC on bending 
and injection molding processes. Not examined here, but 
detailed by Siu [10] is the ability to determine an optimal 
gain based on minimizing quality loss. 

However, CtC does require knowledge of the often 
highly variable process gain, and adaptive methods for in-
process determination of this quantity should be explored. 
Also, there are often many coupled output dimensions in a 
typical product, so multi-variable extension of CtC control 
would be of great value. 
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