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Gradient Index (GRIN) optics: 
radial quadratic 

Glass melt 
with Li+ 

Glass doped  
with Na+ 

Radial index profile: 
fabrication by ion exchange 

• Diffusion driven → parabolic index profile 
• Index contrast nmax-nmin≡Δn ~ 0.1 (commercial) 

• Focal length 

slow dipping 
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Paraxial focusing by a 
thin quadratic GRIN lens 
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Gradient Index (GRIN) optics: 
axial 

• Stack 

• Grind & polish to a sphere 

• Result: 
Spherical refractive surface with 
axial index profile n(z) 

Axial index profile: 
fabrication by melding & grinding 
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Correction of spherical aberration 
by axial GRIN lenses 

aberrated 

corrected 
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Generalized GRIN: 
what is the ray path through arbitrary n(r)? 
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“optical path length” 

light 
ray 

material with variable 
optical “density” 

P 

P’ 

Let’s take a break from optics ... 
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Mechanical oscillator 
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Introduction to the Hamiltonian formulation of dynamics

The Hamiltonian formulation is a set of differential equations describing the trajec-
tories of particles that are subject to a potential (force.) The trajectory is described in
terms of the particle position q(t) and momentum p(t). The Hamiltonian is the total
energy, i.e. the sum of kinetic and potential energies, and it is conserved if there is no
dissipation in the system. For example, for a harmonic oscillator the Hamiltonian is
expressed as

H(q,p) =
p2

2m
+

kq2

2
. (1)

The first term is the kinetic energy for a particle of mass m, and the second term is
the potential energy for linear spring constant k.

The Hamiltonian equations in general are

dq

dt
=

∂H

∂p
, (2)

dp

dt
= −

∂H

∂q
. (3)

The expressions on the right–hand side are the gradients of the Hamiltonian with
respect to the vectors p and q, respectively.

Let us consider the simplest case of a one–dimensional harmonic oscillator. In this
case the position and momentum are scalars q, p. The Hamiltonian equations become

dq
dt

= p
m

dp
dt

= −kq.















⇒
d2q

dt2
=

1

m

dp

dt
= −

k

m
q ⇒

d2q

dt2
+

k

m
q = 0. (4)

We have arrived at the familiar 2nd–order harmonic differential equation. For example,
assuming a particle that is initially at position q(t = 0) = q0 and at rest, p(t = 0) = 0,
the solution to the Hamiltonian equations is

q(t) = q0 cos

(

√

k

m
t

)

, (5)

p(t) = −q0

√
km sin

(

√

k

m
t

)

. (6)

The solution set
{

q(t), p(t)
}

is the trajectory of the particle. The motion represented

by the trajectory that we found is clearly a harmonic oscillation.



MIT 2.71/2.710 
03/04/09 wk5-b- 

Hamiltonian Optics postulates 

Geometrical postulate: 

Rays are continuous and  
 piecewise differentiable 
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= low index n min 

= high index nmax 

s 

p(s) 

∇n(q)

Dynamical postulate: 

Momentum changes along  
trajectory arc length 

 in proportion to the local 
 refractive index gradient 

These are the “equations of motion,” 
i.e. they yield the ray trajectories. 

s: parameterization of the ray trajectory 
q(s): position vector for the ray trajectory at s;  
p(s): tangent vector to the ray trajectory at s 

q(s) 

s 
p(s) 

q(s+Δs) 

p(s+Δs) 
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The ray Hamiltonian 
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The choice yields 

Therefore, the equations of motion become 

Since the ray trajectory satisfies a set of Hamiltonian 
equations on the quantity H, it follows that H is conserved. 

The actual value of H=const. is arbitrary. 

= low index n min 

= high index nmax 

s 

p(s) 

p(s+Δs) 

∇n(q) 

s: parameterization of the ray trajectory 
q(s): position vector for the ray trajectory at s;  
p(s): tangent vector to the ray trajectory at s 

s 
p(s) 

q(s+Δs) 



optical 
axis 

Application: 
Snell’s law of refraction 
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The ray Hamiltonian and the 
Descartes sphere 

p(s) 
n(q(s)) 

The ray momentum p 
is constrained to lie on 

a sphere of radius n 
at any ray location q 
along the trajectory s 

=0 
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Application: 
propagation in a GRIN medium 
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The ray Hamiltonian and the 
Descartes sphere 

p(s) 
n(q(s)) 

The ray momentum p 
is constrained to lie on 

a sphere of radius n 
at any ray location q 
along the trajectory s 

=0 
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n(q) 

The Descartes sphere radius is proportional to n(q); as the rays propagate, 
the lateral momentum is preserved by gradually changing the ray orientation 
to match the Descartes spheres. 

Figure by MIT OpenCourseWare. Adapted from Fig. 1.5 in Wolf, Kurt B. Geometric Optics in Phase Space. 
New York, NY: Springer, 2004. 
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Hamiltonian analogies: 
optics vs mechanics 

Hamiltonian of 
mechanical system 
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physically allowable 
kinetic energy 

physically allowable 
refractive index 
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Example: Hamiltonian ray tracing of 
quadratic GRIN 

Further reading: 
• M. Born and E. Wolf, Principles of Optics, Cambrige University Press, 7th edition, sections 
4.1-4.2 
• K. B. Wolf, Geometrical Optics on Phase Space, Springer, chapters 1, 2 
• K. Tian, Three-dimensional (3D) optical information processing, PhD dissertation, MIT 2006. 
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incidence 

off-axis incidence, 
px(0)=0.2 
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