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COLIN

SHEPPARD:

Right, everyone, we're going to start now. So my name is Colin Sheppard, and I'm going to be giving the lecture
today. George is here to keep me in order, and I think, probably, he'll come up with some comments at times,
maybe-- I hope, anyway.

So he started off by saying that there's no real announcements except that he's changed-- he's uploaded some
revised notes, apparently.

GEORGE

BARBASTATHIS:

There were some minor error in the notes, so I have-- I have fixed them. And the current versions should be-- the
one that's in the website now is the corrected ones.

COLIN

SHEPPARD:

All right, so only minor changes, I think. OK, so I'm going to try and take off from where George left it, which was
with Maxwell's equations and the derivation of the wave equation. It's quite nice to see this derivation of the
wave equation starting from Maxwell's equations, because it brings everything together and allows you to see
how the-- these different areas of physics are interrelated.

But normally, of course, in optics, we don't usually go to the electromagnetic-type theory, so we usually get as far
as the wave equation. We show the existence of simple forms like plane waves and spherical waves. We carry on
then using those plane waves and spherical waves in a simplified form.

But anyway, so back to Maxwell's equations. These were the Maxwell's equations. George, before, explained
these and tried to-- I'm not going to go through the meaning of them, again, because I think you've got that. But
in the differential form, you've just got these four equations connecting the electric field and the magnetic field,
right?

So you'll see that there's two E's there. Sorry, there's three E's, and then there's three B's. And then there's a
charge row and a current that's CJ.

So how we get the wave equation from that is quite simple. It's just a case of doing a bit of vector manipulation.
Curl E, you can see, is minus the Bdt from the Maxwell's equations. So if you take the curl of both sides of that,
you get this equation. And curl B is another of the Maxwell's equations, so you can substitute in from the
Maxwell's equation into this one, and then you'll get another equation.

What you get after that George hasn't actually written here, but basically, what you'd obviously get then, this is
curl of this, so it's going to be curl of curl. So this is what you actually end up with, is curl, curl, curl E is going to
be-- and then the other term is going to be something-- a second derivative in the E. So actually, that equation,
maybe I'll write it down.

It's not actually written there, but after you've just done that substitution, you'll get something like-- is this thing
working, or-- yeah, it is. You'd get something like curl of curl E. There we are. Now you can see it. A lot of people
right cross product like that, as a little, sort of upside down V. Curl curl E plus mu naught epsilon naught, d2, edt
squared equals naught, is I think what you get after you've just substituted that in there.



And then finally-- so this is-- this has still got this thing, curl of curl E, which is quite complicated if you try and
work out what that is in spherical polars or something, especially if you're expressing E as something which is
spatially varying or whatever. This could be quite a complicated thing to have to work out. But anyway, but the--
you can get it into a slightly more usable form-- often we do this-- by using this identity, curl curl E is equal to
grad of div E minus Del squared E.

It calls it here an identity. Really, it's actually the definition of what this thing means. And this is not obvious,
what this means, actually. But these other things, OK, they're well defined, what they mean. This thing is actually
just what it says in Cartesian coordinates, so you know you've got Del is equal to ddx in the I direction, plus ddy
in the J direction, plus dd zed in the K direction.

So Del squared is going to be this dot this, which is going to be d2 Del squared equals d2, dx squared, plus d2, dy
squared, plus d2, d zed squared. And you'll notice that that's exactly the same form as the normal Laplacian,
right? So the lower Laplacian you've had before, Del squared of a scalar, but this is different, because this is Del
squared of a vector.

So what we're saying is that, for Cartesian coordinates, if we define Del squared of a vector by this thing, we find
that it's got exactly the same form as Del squared of a scalar. Now, that doesn't actually work with any other
coordinate system, so that's a bit of a warning. If you go into sphericals or cylindrical coordinates, you'll find that
this Del squared of a vector is not the same as Del squared that you would use for a scalar.

But nevertheless, let's do that. We stick in this as being that. And then we look at this term here, and mostly,
we're going to be interested in, for example, regions where there's no charges. And very often, also, we're going
to be interested in isotropic media.

If these things are true, you know that div D equals row, so Div d is equal to naught if there's no charges, which
means that Div E is equal to naught if there's no charges, and it's also isotropic. So I'm saying this all out in
length because you have to be very careful about this, sometimes. Div E equals naught is only true if you've got
no charges, and it's an isotropic medium.

So if you've got, for example, let's say a diffraction grating, where you've got some variations in permittivity,
then in general, you can't actually assume this, because epsilon is changing. And therefore, with div D equals
naught, div epsilon doesn't equal naught. But if you're in free space or some constant isotopic medium, this is
true. So this term goes, and so this is just equal to minus Del squared. And so you can see then, this Dell squared
then is just replaced by this, and we got a sign change there.

So this is the final expression. And you'll notice then that this is exactly the same form as the normal wave
equation that we're very used to in this scalar form, except that the scalar is replaced by a vector. So that's
really very nice.

Yeah, so comparing with that wave equation, this is the normal wave equation we've had, the scalar wave
equation before, and you can see then they're exactly the same, except that the scalar is replaced by a vector.
And the one over c squared, where c is the velocity of the wave, is replaced by this thing, so we can say then
that 1 over c squared is equal to mu naught epsilon naught, and that gives us then c is 1 over the square root of
mu naught epsilon naught. And so here, there are some figures put in, and we get the expression for the speed
of light in vacuum.



So that's very neat. I guess Maxwell must have been really amazed when he did this sum. You don't know, of
course, the actual history of the thing, but he played around with these equations, didn't he? And he came up
with this form which looked nicely symmetrical to him.

And then he comes out with an expression, comes out with a value, for the speed of light that it predicts, which is
what they already knew was true. So he must have felt really as though he was going to get the Nobel Prize or
something. But probably, I don't know-- maybe it was before the Nobel Prize, so quite interesting.

And actually, Naveen was telling me that he'd been looking at the original paper by Maxwell. Maxwell's
equations, if you look in the original, are horrible, because he doesn't-- this terminology for vectors wasn't
invented then. So it's done all in terms of components, horribly complicated.

And I think Naveen said it was the-- Heaviside who actually really derived the Maxwell's equations in the form
that we know and love so well nowadays. Heaviside you might remember, he's famous for a few things, but one
of them is a thing called the Heaviside function, which is basically a step function. And the other thing is the
Heaviside layer, which is an ionic layer in the ionosphere that he reflects radio waves from.

OK, so that's all about free space. So how can we now deal with matter? Well, it turns out actually there's lots of
different ways you can deal with-- lots of levels you can deal with propagation of electromagnetic waves in
matter. You can, for example, treat it really from a proper atomic point of view. You can think of the material
being made up of atoms which have got nuclei and electrons clouds and so on.

Or you can think of it in terms of matter just being like an isotropic material, where you don't really go into the
microscopic view of it, but just think of it in a macroscopic way. And actually, to some degree, I think that, very
often, the second of those is just as well, because normally, we're not really interested in the actual atomic
nature of where these properties come from.

But this is going back to how you can think of it, really, in terms of atoms. So as you know, atoms are made up of
a nucleus with an electron cloud. And the nucleus is relatively fixed, of course, because it's heavy, but the
electron cloud, because the electrons are much lighter, can be moved around by the field that's supplied. So you
get the distortion of the electron cloud.

So this is what this is showing here. It's showing here the nucleus here, which is pretty well fixed, because it's so
heavy. And then this electron cloud, you can think of it like being joined to the nucleus by a lot of springs. And
then the electrostatic-- the forces on that electric cloud caused by the electric field will tend to, for example,
displace the electron cloud relative to the nucleus.

So it gets sort of distorted. And the way that's described is in terms of a property called the polarization then. So
this is showing how-- you can see that if you move the negative charges relative to the positive charges, you'll
set up a sort of dipole moment. Separate the charges, you've got a plus and a minus. They're separated in
distance, so that acts like a dipole. So that acts like a-- gives you a dipole moment, and then if you sum over all
those dipole moments, you'll get the total polarization effects of applying that field.



So what that does then is introduces these charge variations, which distort the charge that you really have there,
which is caused by the bound charges. So this is what we get. You can say that div D equals row, so div E is
equal to row over epsilon naught, assuming the-- yeah, well, this is-- epsilon naught, of course, is really a
constant.

And we are breaking this up into it's bound-and-free components, and we're saying that the free part-- we've got
something wrong with this again, haven't we? Sorry, that should say-- that should say free there, shouldn't it?
Yeah. The free part and the bound part is this part, and so this is it, the final result then. We can now take the
epsilon naught the other side, take this the other side, and we get the div of epsilon naught E plus P is equal to
the free charges, right?

And then this thing in brackets here is what we call D, the displacement in the medium. So it's like if you've got
this medium, div D equals row is what we know is the normal expression that we write from Maxwell's equations.
And now, we've derived that that D, in the medium, can be written in terms of the polarization of the molecules
that make up the medium.

So how do these things connect? This shows us how we do this then. So we've got D equals epsilon naught E plus
P. Now, in general, of course, we don't really know what this does at the moment. And in general, it can be very
complicated, actually. It can be a non-linear relationship with the electric field.

But if I go back again to the diagram, you'll see that this is a bit like-- you know, you've got springs here. Hooke's
law tells us, in mechanics, if a system obeys Hooke's law, then the extension is proportional to the-- the tension
is-- what is it? Extension is proportional to the attention. Sorry, I'm not a mechanical engineer, so I don't know
these things.

So you'd expect the same would be true-- could be the same-- could be true here. If you're only applying a very
weak field on here, then you might think that this relationship might be linear. You'll get these springs behaving
like Hooke's law, so you'll get a linear relationship between P and D.

Now, also, in analogy with the mechanical situation-- yeah?

STUDENT: So if we're in a mat-- like in a material, why is it the permitivity of free space and not just the permittivity of the
material? Like why is it epsilon naught and not epsilon?

COLIN

SHEPPARD:

Why is it epsilon naught here that you can write this? This is either you can think of as epsilon naught-- epsilon E,
or you can think of it as epsilon naught E plus P. So these are two alternative ways of looking at the same thing,
right?

So we've got D equals epsilon naught E plus P, and you can think of this as being epsilon E. So we're just about to
carry onto this on the next slide, actually. So that, you can see, tells us that there is a relationship now between
epsilon and P, right? We're going to look what that relationship is.

But in general, it's actually quite complicated, because we don't know the relationship between P and E yet,
right? So what I'm trying to establish at the moment is that if this thing-- if the fields are very weak, then you'd
expect, maybe, a linear relationship. P will be proportional to E. So this term here will also be something times E,
and so you'll be able to take out E as a factor from this.



Now, this is only going to be true if this electric field is weak compared with the-- you know, if the force due to
the electric field is weak compared with the forces involved in the binding the electrons to the nucleus. And I
suppose it was probably not until the invention of the laser that probably even people thought you could ever
possibly get to a case where that might not be true. But now, of course, we know, if you've got a laser, you can
make really big fields. You can get, very easily, into this rate regime where this polarization changes.

And so you'll get non-linear-type terms coming. You're not going to do this at all in the course. But there is this
whole area, of course, of non-linear optics, which is when this linear approximation breaks down.

So here we are. So this is back to this, what I said, D equals epsilon E. OK, so that's really the answer to your
question. And the D equals epsilon E, but D equals this other expression, epsilon naught E plus P. And now, we
say that P is proportional to E.

This Chi is called the electrics susceptibility, which I think is a confusing term because it's often, in practice, just
called susceptibility. People just neglect the electric bit. But of course, there is also a magnetic susceptibility
which is very important when you're doing magnetic materials.

And unfortunately, people use Chi for that too, so that really gets people confused if you're not careful. So we're
not going to be doing anything with magnetism, so maybe it's no problem for us. But anyway, this is the electric
susceptibility.

So we can put in our P as Chi E, and therefore, D equals epsilon naught 1 plus Chi times E. And this is equal to
epsilon E, as we've said. And you can see then, we have that epsilon must equal this thing, epsilon equals epsilon
naught 1 plus Chi.

And this is a another expression we've had before, in terms of the refractive index, so you can write the
permittivity, the relative permittivity, in terms of refractive index, right? So this is the refractive index coming in
here. So under refractive index then is the square root of 1 plus Chi.

And so you see how all these things are connected. You could also say, one more, of course. Where are we? Yeah,
we could say that we've got n squared equals 1 plus Chi, so Chi is equal to n squared minus 1. So this is another
sort of form you might come across at times.

You can see then, we know in free space-- free space, n is 1, so this thing is 0. So there is no polarization of free
space, which is what we know, because there's nothing in it. So there's nothing to polarize. OK?

So, yeah, this bottom bit just says that you can do the same for magnetism. You can do virtually the same sort of
expansions for magnetism, but we're not going to deal with this, because we're not going to deal with magnetic
materials at all. But there are some quite interesting, you know, magneto optic materials and so on, which are
quite important actually, nowadays, in terms of things like optical data storage and so on. We're just going to be
assuming that, from the magnetic point of view, the material just behaves exactly the same as free space, so B
equals mu naught H. Yeah?

STUDENT: The electric polarization subtracts the field out of the original. Polarization adds the field, magnetization subtracts
the field.



COLIN

SHEPPARD:

Yeah. [INAUDIBLE] has asked this question of why this is a plus, and this is a minus. And the answer is, I think it's
all to do with all these horrible things you learn about in magnetism, dire magnetism and paramagnetism. And
sometimes, it's whether they oppose the change to which they were due and all that sort of stuff. So I think it's
just a case of whether-- if you define magnetization in the way that it's normally done, then it turns out there's a
minus sign, but I think you could equally well have defined it as being the opposite side, actually. Yeah. I don't
really know much about magnetism, so don't ask me too much about that.

STUDENT: Also, I think it has to do with the part of the stuff that-- B is actually the conjugate of the electric displacement.

COLIN

SHEPPARD:

Ah.

STUDENT: So it includes the effect of magnetization. So another way to put it is if you could please go back one, if you solve
this, if you take M to the other side, then multiply it by mu naught, then you'll get exactly the question as before.

COLIN

SHEPPARD:

Of course that's right. If you just expand this out, you get B equals mu naught H plus M, so it would be exactly
the same form then.

STUDENT: So the field is actually H, not B. The conjugate of the electric field, E, is the magnetic field, H, not B. B is the
induction.

COLIN

SHEPPARD:

Yeah. OK. So now then, let's write down those Maxwell's equations for these various different cases. So this is
how you can write them in vacuum. That's how we first came across them. And if you've got vacuum, and in
addition, you've got no charges and no currents, then of course, this term, this will be 0, and this J will also be 0.
And now, you can see that they look nicely symmetrical. These two are both equal to 0, and these things are
both equal to a first-- a time derivative, but there is a difference of a sine-- but apart from that, nicely
symmetrical.

And then the middle row here says, if you've got some matter, and it's still allowed to have free charges and
currents, then we can write these things. So this is what we just said a minute ago. Of course, if you've got no
free charges, then div D is 0.

And then if you've got a material, matter, without the free charges, then again, we put the rows in the J's, 0, and
we end up with these quite nice, simple, and symmetrical sort of relationships. And in any of these cases, of
course, you could derive the wave equation and write it in that same form we had before, OK? And as we said,
this term here is related to the speed of light in the medium, and what we find is that the speed of light in the
medium is equal to the speed of light, your free space, divided by the refractive index. All of those things are
things we've had before.

So I'll just stress again, one thing that I did say earlier, this was originally, if you remember, curl curl E. And then
when we got rid of the curl curl E, we actually had to get rid of a-- what was it-- grad of div E. And we assumed
that grad div E is 0. I'm just reminding you, again, that is not always true, so beware. And you probably won't
come across anything in this course, but in the general wide world, it's not always true. And the second thing to
remember is that this thing, Del squared of a vector, that Del squared is not equal to the same as the Laplacian
except if you're in Cartesian coordinates.



OK, so now we've got the wave equation, we go back just like we did for scalar waves. We could look at different
solutions of that wave equation, and the simplest possible one is the equation of a plane wave. And so this is a
picture of what it looks like.

I presume these pictures are taken from [INAUDIBLE], but to me, it seems very perverse to have the wave
propagating in the x direction. He's a bit strange there, but anyway, virtually every book has the wave
propagating in the zed direction. But nevermind, we won't worry too much. It obviously doesn't make any
difference.

But this is the important thing, is we get the electric field vector and the magnetic field vector, E and B he's
drawing here. It could equally well be B and H, because the two-- the B and H are going to be proportional to each
other, or at right angles to each other. I'm just telling you the results first. I haven't proved this yet. And the wave
is propagating in a direction which is at right angles to both of those.

And so these three form a triad, and it's a right-handed triad such that E cross B is in the direction the wave goes.
So that's the way to always remember it. Well, that's the way I remember it, is that E cross B is in the direction
the field travels, which means, of course, if you've got a right-hand coordinate system, normally, we would take E
in the x direction and B in the y direction, and then the wave moves in the zed direction. But he's taken it with E
in the y direction like this, in order to get it so that it's still a right-handed coordinate system.

And so how do we get that? Well, first of all, of course, we can say it's quite straightforward for the E. We can just
solve this thing for the-- just as a-- it's a scalar and get an expression for E. E is going to be then polarized in a
particular direction.

We've then got to work out how B is polarized for this particular value of E. Well, George has said something here
which is-- I guess it's correct, but it's quite sort of condensed, and I went through how I would really derive it. So
perhaps, I'll say a bit more about that.

Well, this first part is all right. We've got curl E is minus db dt. And we know that the time dependence is this e to
the minus i omega t. So ddt of e to the minus i omega t is very straightforward. That's just-- the minus i omega
comes out the front. So that's what we get. Curl e is equal to minus db, dt, is equal to i omega b.

And so we can say then that b is equal to minus i over omega curl e, all right? So if we know what e is, we can
work out what b is from that. And so we take e as being this thing, all right?

So in general, this might not be traveling in the x direction or any other particular direction. It might be just
pointing in some direction in space. So really, I guess, you ought to do it for that general case, which means that
effectively what you've got to do is to work out what curl of the e is. And e is, effectively, as you can see, a scalar
quantity.

Well, let's forget about the time dependence. We're only looking at the space now. There's this scalar quantity
here. Time is a constant vector. So we then have to use another of our identities, which is the curl of a scalar
times a vector.



So let's write it like that. And you might remember that that is equal to-- and I had to look it up because I never
know these things-- 5 times curl a plus grad phi across a, all right? So that is a general vector identity which
allows you to work out the curl of this product of two things.

And in our case, this is a plane wave. So this direction of the e vector is constant. So our a is a constant. So curl
of a is going to be 0 because it's constant. So that goes. And we're then left with the curl of phi times a is grad
phi cross a.

And phi is equal to-- phi equals e to the i k dot r. And a is equal to this direction of the e vector, all right? So if phi
equals e to the i k dot r, then grad phi is equal to ik times e to the i k dot r. And so we stick that into here.

And after we've done that, we can derive this expression here. We find that finally the magnetic vector is equal
to the cross products of these two. So that's why, of course, all these three things have to be right angles to each
other, all right?

So the next thing, this is a picture of it moving along then. And we'll stress, very strongly, something. And that is
that these two, the electric and magnetic field, are in phase with each other.

I don't know what it is, but I've often found that students don't seem to pick this up. And they come up with
these funny ideas about them being in quadrature. And I think they get it mixed up with some other things.

But for a plane polarized wave, the electric field and the magnetic field, you can see, are in phase with each
other. When the e is a maximum, the b is a maximum. And then they will have this wave form.

Here this is showing the wave as a function of distance. This is like a snapshot of what happens at a particular
time. But you could equally well get a very similar sort of thing by looking at a particular position and seeing how
it changes with time.

You'd also get sine waves like this. And you would also see that these two, the electric and magnetic fields, have
to be in phase with each other for that case, too. OK? This is expressing-- showing you, again, this right-hand rule
or whatever it is for-- I don't know how you do these things.

But anyway, I always like the-- I can never do these, partly because I'm left-handed, I think. It ruins things. But
this corkscrew rule is the one that I always know that one. And my students will know it's because I'm very handy
with a corkscrew. [LAUGHS]

So this is showing, then, how this electric field varies with space, the fixed time. And the distance, then, between
these maxima in the electric field is the wavelength, all right? So this is going to propagate. It's a traveling wave.
So this structure moves bodily, doesn't it, in time along this direction of propagation.

Ah, and now we get onto this thing that I was talking with George about on the way, the Poynting vector. And I
don't think you actually really sort of prove it, do you, what it really does. But basically the Poynting vector, it
turns out, is a measure of the energy flow. So it's a way of looking at the energy that's carried by a wave.

And this is the definition of it. So s is equal to 1 over mu 0, e cross b. Actually, you can see b equals-- actually, I
think this should really be mu, shouldn't it, not mu 0, really, if it was in a general medium.



And b equals mu h, of course. So this is really cross h. So that's the way it's sometimes derived, sometimes
defined. But anyway, but if you're in free space, then you can write it with mu 0 here like that.

And then, using our expression for the velocity of light, then we can write it like this. But I think this is also true
for free space only. I think that's right. Presumably this is from Hecht again.

OK, so this is what our waves look like. Each of electric and magnetic fields is a cosine-type wave. So this
represents, then, a wave which is moving in this direction, all right?

So this thing in here basically is the phase, isn't it? You got cos of a phase term. So you can see that as omega t
varies, so the shape of the wave is going to sort of move in a particular direction.

And you'll notice that-- oh, this is a vector. This is a vector, but this is a constant vector. So this is a vector which
tells you the amplitude of that wave in magnitude and direction.

And you'll notice that these cosine bits are exactly the same. That's because, as we said, the e and the b are in
phase with each other. And so all that's very simple.

And so what we can say is that if we represent the fields like this, we can say, according to our definition of the
Poynting vector, we can write it like this. And so we end up, then, cos times cos is cos squared.

So notice that, although cos of course can go negative, it's periodic, isn't it? So it's negative half as long as it's
positive. Cos squared is always positive.

So the way this is defined, the Poynting vector is always going in the same direction. It's always, when you've got
a plane wave, the energy is going in the direction of the direction of propagation of the wave.

And OK, so this shows us how we get all this. Sorry, let me-- this shows us-- can I go back? Aw, yeah. Oh, I've
gone back too far now. Here we are.

This shows us how this Poynting vector varies in space and time, all right? So this Poynting vector has also got a
sort of wave-type nature. But normally what we're interested in is not how it varies in space and time, but what
the time-averaged form of that is going to look like.

And so we can do a time average of it. And so that's what this thing here is. This s with the lines on either side is
the time average of s. And so we've got b is k times e over omega.

And so therefore we've got here e cross b. And we know what b is. So we can put that in. And we're going to get
now e squared. All right, so finally what we get is that the Poynting vector is proportional to the time average of
the electric field squared.

AUDIENCE: [INAUDIBLE]

COLIN

SHEPPARD:

Sorry?

AUDIENCE: Let's take the average. We haven't done the average.

COLIN

SHEPPARD:

Oh, we haven't done any average yet. Sorry, but this is the modulus. So--



AUDIENCE: Anyway [INAUDIBLE].

COLIN

SHEPPARD:

It's the--

AUDIENCE: So right now--

COLIN

SHEPPARD:

What do the two lines mean?

AUDIENCE: The magnitude of the vector.

COLIN

SHEPPARD:

OK, it's the magnitude of the vector.

AUDIENCE: A function of time.

COLIN

SHEPPARD:

It's still a function of time. OK, we'll take it as that, yeah. And yeah, OK. And I think, really, if it's in a medium, this
is epsilon, not epsilon 0. Is that right?

AUDIENCE: Yeah.

COLIN

SHEPPARD:

Yeah. OK, so now we're going to do the time averaging. So this e, e is a time-varying quantity. e varies with both
space and time.

And so this is the modular square of it, of the vector. So we put that in. And we get, then, the s is equal to
something we cos squared. So it's not much different from what we had before.

OK, and then the next thing we do is to do the time averaging. So this is something which is positive but
oscillating, time-varying. And the speed of these variations is very, very fast.

We've said before the frequency of light is around 10 to the 15 Hertz, which is faster than any detector that we
have to measure the fields directly, all right? So you can't actually measure the electric field or the power of an
optical wave because the frequency's so high.

So a normal detector, like a photo diode or whatever, would be measuring some time average of this because
there's no way it can respond to this sort of frequency. So we do the time average. And so this is how we can do
the time average, right?

The square things mean time average, the caret signs. And the time average, you integrate this over a long time
and divide by the time to get the time average. And so this is called-- well, usually called intensity. I think that
"intensity" is now frowned upon by purists. And they come up with new names every now and then.

So "irradiance" is a word that you often read nowadays in the literature. And yeah, so here it's measured in watts
per square meter, which is obviously a unit of power density, all right?

There's one other thing that's worth mentioning here. And that is actually that normal detectors actually really
don't measure the Poynting vector. They actually usually measure the electric energy density.



And there's a thing called Poynting's theorem, which, if you study electromagnetism, will show that the power
flow out of a volume is equal to the rate of change of the stored energy. And the stored energy is made up of
electric and magnetic energy. So all these things are related.

And it turns out that for all practical purposes normally it doesn't really matter whether you're measuring the
Poynting vector or the electric energy density or whatever. It's going to give the same sort of answer. But there
are cases where you have to be careful.

OK, and then finally we've got to do this time average of cos squared. And the time average of cos squared is
just a half. You remember how you do that? Cos squared, you go into double angles. And then you get a cosine
that cancels out. And you're just left with the constant bit.

And then, finally then, you put that half in. And we've now got an expression for the intensity, defined as being
the time average of the Poynting vector as being equal to the amplitude of the electric field squared, multiplied
by some constant, which, in probably 99 cases out of 100, we don't even bother to even think what that constant
is, let alone thinking of whether there's a half there.

So you'll see loads of books or papers where they just say that the intensity is equal to e squared, which is
strictly not true, I guess, but people do say. So how are we going? We got one hour, yeah.

OK, so that's how you can calculate the power flow for a plane wave. I guess the method is not only going to be
true for plane waves. But you can apply it for other sorts of waves, too.

But the next thing is you might think back to what we were doing with phases. And there are a few things that
are important to realize here, what you can do and what you can't do.

You remember this is what we said from our phases. We said that what we actually measure in the real world is a
wave that's like this. It's a cosine dependence in space and time. And we say that we use this complex
representative where we say that this is the real part of some complex exponential.

And if you remember, the reason for doing that is that these complex exponentials are much easier to
manipulate. It means that you don't have to remember all those horrible cos of a plus b things and so on. So it's
much easier to do the algebra using these.

So what you do normally, as you remember, is you do all your algebra with each of the i-somethings. And then
right at the very end normally, you find the real part to find what the real field is in real space, as we're used to.

But here, now you've got to be very careful because you saw that the Poynting vector actually was cos squared,
all right? So this is a nonlinear. We performed a nonlinear operation.

And if you do nonlinear operations, the same would be true for nonlinear optics, as well, actually. You can't do it
in this complex notation directly because you just get the wrong answer. If you squared this, you get an e to the
2i kz minus 5, wouldn't you? Now the real part of that is not what we want.

So what you've really got to do is to work through, I guess-- well, the surest way of doing it is to work through in
terms of the cosines and so on rather than to go into e to the i's. So this is saying a bit more about this.



So what we've got, then, is this is showing how you can do it in terms of the cosines. So you can see that, for
example, here we've got two fields. And let's say that you see the point is that, although the fields are additive,
the power of those two waves is not going to be equal to the sum of the powers of the two waves, all right?

So we can say that the e's would add coherently. And then we can work out the power flow of the sum of these
two fields. And you can see of course, expanding this square, you're going to have the power of the two.

But you're also going to get this cross term, the cross product term, which depends-- you can see here-- on the
relative phase of the two waves. If they're out of phase by 90 degrees, then that will go to 0. But if they're in
phase, this of course is going to be strong.

And so that's one way of doing it. But in terms of phases, then, you can do it in terms of phases. I'm just saying
you have to be careful how you do it.

And so you have to add the phases first and then find the modulus square. You can't actually do the squaring and
then do the real power, all right?

So you add these two phases together, which gives the total field. And then the intensity is going to be the
modulus square of this. And you expand it. And you can see we've got exactly the same answer.

So it doesn't matter which way you do it, as long as you do it one of those ways. What you don't want to do is to
try squaring the e-to-the-i things and then taking the real power because you'll get something different then.

And that is the very last slide. And that is dead on time. So, well, whoa, we've got a couple of minutes for some
questions. So any questions? Yes, Sharon?

AUDIENCE: [INAUDIBLE]. Hello? I'm quite curious about the Poynting vector. And you mentioned that it's actually a cross
term, and it's similar like propagation and direction, like where the energy flows.

But what about the peculiar case in evanescent waves? Does it mean the energy is not propagating there?

COLIN

SHEPPARD:

Oh, oh, dear. Oh, yes. Evanescent waves, you're getting onto something really controversial--

AUDIENCE: No, I'm thinking--

COLIN

SHEPPARD:

--here, I think--

AUDIENCE: [LAUGHS]

COLIN

SHEPPARD:

--actually.

AUDIENCE: Well, where has the energy gone then?

COLIN

SHEPPARD:

Sorry?



AUDIENCE: I mean, if the Poynting vector is the direction of the energy flow, then it seems like there's no propagation in
energy in the evanescent wave then--

COLIN

SHEPPARD:

Well, it is normally said that there is no energy propagation in an evanescent wave. But you know, in a way,
there is. There's sort of transverse propagation of energy. But there's no energy flow across-- if you're doing total
internal reflection and you're looking at the steady state, there's no energy flow across the boundary, I think is
true to say. Is that true, or-- yeah, this is--

GEORGE

BARBASTATHIS:

Yes.

COLIN

SHEPPARD:

--getting a bit controversial, isn't it?

GEORGE

BARBASTATHIS:

Yes, you can-- if you have the interface-- I don't know if anyone can see, but if you have the interface of the TAR,
if you compute the Poynting vector in the vertical direction, those have to be 0. The time average is 0.

COLIN

SHEPPARD:

Yeah, yeah.

GEORGE

BARBASTATHIS:

So you don't have energy flow. But you do have energy density.

COLIN

SHEPPARD:

Yeah, yeah. And the other thing is, you know, the question of if you've got-- and this is your total internal
reflection. So here you get this evanescent wave.

Now, of course, all these questions of these evanescent waves and so on, they all rely on assuming infinite plane
waves and infinite surfaces and things like that, which of course none of these things can really be strictly true in
practice. But if we do this, then we'd expect to get something which is actually traveling in this direction.

And so in some sense, I think that there is some sort of energy flow in the transverse direction. But I'm just
having a big argument about this, not for this case, but to do with some other project we're doing at the moment
where it's to do with when the h vector is 0.

And so the question is, is there energy flow? Well, I guess there isn't. But I think there's also this question of
whether Poynting vector really always means the energy flow.

In fact, I remember having a conversation with Emil Wolf once about this. And, well, he said, let me give you an
example. Imagine you have a DC planar electric field in this direction, and you have a DC planar magnetic field in
this direction. Is there any energy flow? No. But you can work out what e cross h is.

And you know, so I think that he put this forward as an example which makes you wonder whether it necessarily
really always means energy flow. We were talking about this in the lab today because people have come up with
these solutions where, for example, energy flow sometimes does this.

So you might get the lines of-- the Poynting vector might do something like this. So here you can see that there
has to be some sort of 0 around here because this is going this way, and this is going this way. And here you can
actually get these, sort of, closed eddies of Poynting vector that's going round in circles.



Now, whether this really represents something that's physical or not, I don't really know. You know, in water flow,
I guess you could get this. There's no reason why you couldn't get eddies of water going in circles.

But you know, so this is what you get. This is what you get if you've just got a very simple example of a lens
focusing the light. You get this sort of pattern if I look at this in some detail. You get this sort of behavior in this
region here.

And there've been papers that have described this. But what it really means in practice-- well, I guess nothing
really means anything unless you can measure it. So the question is, can you come up with a detector that
measures Poynting vector? And I don't know the answer to that.

As I said earlier, I think normally detectors measure electric energy density. So people have looked at what
happens in this focused region of a lens. And there are various ways you can look at that.

People have used near-field optics, you know, a tapered fiber to look at it. Or you can do some sort of
tomography-type experiments with a detector that you rotate and things like that. But to actually measure the
Poynting vector, I don't know. Right, any questions from over there?


