

2.60/2.62 lecture 21 Energy system modeling and examples

Xiao-Yu Wu, PhD'17

Postdoctoral Associate at MIT Assistant Professor at University of Waterloo (starting in May 2020)

April 22 2020

- After this lecture, students are capable to
- Identify energy systems
- Explain the reason to carry out system analysis of energy systems
- Describe the basic functionality of Aspen Plus[™]
- Perform a system analysis using Aspen Plus[™] with the help of manual

Outline

- Advanced energy systems: innovation and characterization
- System analysis: what we can learn from it?
- Aspen Plus[™] overview
- Examples
 - 1. A novel IGCC-CC power plant integrated with an oxygen permeable membrane for hydrogen production and carbon capture (CC)
 - 2. Dynamic modeling of a flexible Power-to-X plant for energy storage and hydrogen production

What is an energy system?

• The energy system comprises all the components related to the production, conversion, delivery, and use of energy

---- Intergovernmental Panel on Climate Change^[1]

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse. [1] IPCC, Climate change 2014, mitigation of climate change, P1261

Energy production: electricity production as an example

14ii

Global electricity production by source and projection based on sustainable development

Energy transport – electricity transmission congestion

- Electricity transmission has its own constraints -- thermal, voltage and stability limits designed to ensure reliability
- Congestion occurs when lack of transmission line capacity to deliver electricity reliably
- This can impact
 - Electricity price at peak demand
 - Transmission of the cheap renewable electricity

Energy transport – hydrogen transmission and distribution

Energy consumption

• Global total energy consumption by sector

Sources: IEA website (up to 2017)

Net-zero emission integrated systems

Modified from Davis et al., Science 360, 2018

l'li ī

- Energy efficiency: energy consumption and production
- Emissions: GHG, pollutants, waste heat, etc.
- Economics: money flow, etc.

....

• Societal impacts: health, risks, public perception, etc.

Energy systems and COVID-19: system perspective during analysis

- Pollution drops due to the lockdown of cities, decline in industry production and electricity demand
- But meanwhile, people suffers from health problems, job losses, etc.

NO₂ levels in part of China (a week after Chinese New Year)

© Carbon Brief Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

$\mathrm{NO}_{\mathbf{2}}$ levels in Northeast US in March

Image courtesy of NASA.

Energy consumption will ramp up after COVID-19, but in what manners?

14111

Q keep

• Fossil fuels?

Short term incentive due to low prices

• Renewables?

"Once COVID-19 has been defeated, attracting investments and re-establishing the manufacturing and supply chains for wind and solar power will take much longer than turning up production at oil wells and restarting thermal power plant units." – *Nature Energy*

Policies, supply chains, investments, manufacturing capabilities

Ref: Recovering fast and slow. Nat Energy 5, 273 (2020).

MARKETSINSIDER WATCHLIST

MARKETS STOCKS INDICES COMMODITIES CRYPTOCURRENCIES CURRENCIES ETFS NEWS BI PRIME

Oil plunges 39% to 21-year low as sinking demand spurs uncertainty around storage

Saloni Sardana () Apr. 20, 2020, 05:39 AM

SHARE

© Insider Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

© OilPrice.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>. 12

- Energy efficiency: energy consumption and production
- Emissions: GHG, pollutants, waste heat, etc.
- Economics: money flow, etc.

....

• Societal impacts: health, risks, public perception, etc.

• It is useful to obtain these information of the complex energy systems (integrated mechanical, chemical and electrical components) using some modeling softwares

- With interactive graphical user interfaces (Drag-and-connect)
 - Aspen Plus
 - Thermoflow
 - gPROMS
- Mainly coding
 - EES
 - Matlab
 - Cantera

```
function w = pump(fluid, pfinal, eta)
% PUMP - Adiabatically pump a fluid to pressure pfinal, using a pump
% with isentropic efficiency eta.
%
h0 = enthalpy_mass(fluid);
s0 = entropy_mass(fluid);
set(fluid, 'S', s0, 'P', pfinal);
h1s = enthalpy_mass(fluid);
isentropic_work = h1s - h0;
actual_work = isentropic_work / eta;
h1 = h0 + actual_work;
set(fluid, 'H',h1, 'P',pfinal);
w = actual_work;
```

COMPERSS

- A process simulation tool
 - Heat Exchanges
 - Reactors
 - Pressure Changers (Valves, Pumps, Compressors, etc.)
 - Distillation Columns
 - Absorption Columns
 - Extractors
 - Flash systems
 - Separators & Mixers
 - Solid Operations (Crushing, sieving, filtration, etc...)
 - User models (unique for you!)
- Given a process design and an appropriate selection of thermodynamic models, it uses mathematical models to predict the performance of the process

|'||iī

User interface

General steps for process modeling using Aspen Plus[™]

- 1. Define chemical components in the process and select the appropriate thermodynamics model
- 2. Build the process by dragging and connecting components from the palette
- 3. Define the input of the process and the components' parameters
- 4. If there are some constraints in the flowsheet, e.g., temperature, flow rate, and component performance, input them into the flowsheeting options.
- 5. Run the simulation!

Thermodynamics method is important for evaluating the physical properties

➤ See Figure 2

Electolyte NRTL

Peng-Robinson,

Chao-Seader,

Braun K-10

Redlich-Kwong-Soave,

Lee-Kesler-Plocker

Gravson-Streed or

Braun K-10 or Ideal

or Pitzer

Flow chart for method selection

Ref: Don't Gamble With Physical Properties For Simulations, Eric C. Carlson, Aspen Technology, Inc

First, select components and thermodynamics properties

Properties <	Components - Specifications × +
All Items 🔹	Selection Petroleum Nonconventional Enterprise Database Information
All Items	Selection Petroleum Nonconventional Enterprise Database Information Select components Component ID Type Component name Alias Find Elec Wizard User Defined Reorder Review
 Data Estimation Analysis Customize Results 	

First, select components and thermodynamics properties

All Items 🔹	Selection	n Petrole	um Nonconventional	Enterprise Database	Information	
Components	Select com	ponents				
Specifications	Con	ponent ID	Тур	e	Component name	Alias
Molecular Structure	H20		Conventional		WATER	H2O
Assay/Blend	H2		Conventional		HYDROGEN	H2
Petro Characterization	02		Conventional		OXYGEN	02
Pseudocomponents	•					
Component Attributes Henry Comps HILLAC Comment	Find	Elec	Wizard User Defin	Reorder	Review	

Then, draw the process flowsheet

Simulation <	Economics		0	Energy		0	EDR Exchang	jer Feasi	bility	
All Items 🔹	Capital Cost	Utility Cost		Available E	nergy Savings		Unknown	OK	At Risk	
👂 📷 Setup							0	0	0	
Property Sets	USD	USD/Year	off	MW	% of Actual	off				•
🛅 Analysis	Main Flowsheet X	+								
Flowsheet	Main Howsheet									
🧊 Streams										
Blocks										
📁 Utilities										
Reactions										
Convergence										
Flowsheeting Options										
👂 🚞 Model Analysis Tools										
EO Configuration										
Results Summary										
Dynamic Configuration										

The process components can be added into the process

Then, connect the components

By double clicking the component, you can look at its settings

specifications	Calculation Opti	ons Power L	oss Conver	gence	Integration Parameters	Utility	Information
Model and type — Model	pressor	C Turbine					
Type Isenti	opic	U Turbine			•		
Outlet specificatio	n						
Discharge press	ure 20	bar	•				
Pressure increa	se	bar	Ŧ				
🔵 Pressure ratio							
Power required		kW	v				
🔘 Use performan	e curves to deter	mine discharge	conditions				
Efficiencies							
sentropic 0.9	Polytropi	c	Mechanical	0.95			

Define the inlet

Specifications Tash Type Temperature State variables Temperature 25 C Pressure 1 bar Value H20 H20 H2 1 Component Value H20 H2 1 O2 Value	Mixed CI	Solid	NC Solid	Flash Options	EO Options	Costing	Information	
Flash Type Temperature Pressure State variables Temperature 25 C Pressure 1 bar Vapor fraction Total flow basis Mole Total flow rate 1 kmol/hr <	Specificati	ons						
State variables Temperature 25 Pressure 1 bar Vapor fraction Total flow basis Mole I Kmol/hr O2	- lash Type	T	emperature	• Pres	sure	- Cor	mposition	
Temperature 25 C Pressure 1 Vapor fraction	- State variabl	les —				M	ole-Flow	 kmol/hr
Pressure 1 Vapor fraction Total flow basis Mole Total flow rate Solvent	Temperatur	e	25	C	•		Component	Value
Vapor fraction Total flow basis Mole Total flow rate Solvent	Pressure		1	bar	•		H2O	
Total flow basis Mole Image: Constraint of the second sec	Vapor fraction	on				•	H2	1
Total flow rate 1 kmol/hr Solvent -	Total flow b	asis	Mole	-			02	
Solvent	Total flow ra	ate	1	kmol	l/hr 🔹		1	
	Solvent				-			
		С	*					
C -	Component	concen	tration referer	nce temperature	2			
C Component concentration reference temperature		C	-				Tota	1 1

Click run

Results for the hydrogen pressure

More details results can be found by right clicking the component

C		Delener	Danamatan	Daufamara	an Demension	L Dallas Harris	Charles
Sur	nmary	Balance	Parameters	Performan	ce Regression	i Utility Usage	Status
	~						
•	Comp	pressor mod	lel	Isentropic Co	ompressor		
2	Phase	calculation	IS	Vapor phase	calculation		
2	Indica	ted horsep	ower	3.62226	kW		
2	Brake horsepower		3.8129	kW			
e.	Net work required		3.8129	kW			
×.	Powe	r loss		0.190645	kW		
Þ.	Efficie	ency		0.9			
×	Mech	anical effici	ency	0.95			
Þ.	Outle	t pressure		20	bar		
×	Outle	t temperatu	re	470.682	С		
×.	Isentr	opic outlet	temperature	426.363	с		
	Vana	to a train					

Some examples

- 1. Thermodynamic efficiency of a novel IGCC-CC power plant integrated with an oxygen permeable membrane for hydrogen production and carbon capture (CC)
 (XY Wu, et al., Journal of Advanced Manufacturing and Processing, 2020, under review)
- 2. Dynamic modeling of a flexible Power-to-X plant
- (G Buffo, et al., Journal of Energy Storage, 2020, 29, 101314)

Example 1: Energy efficiency analysis (IGCC-CC)

• Conventional Integrated Gasification Combined Cycle (IGCC) plant includes **gasifier**, **syngas cleaning systems**, and a **combined cycle**

Layout of the Aspen model

Selexol reactor

[1] Kyle A, et al., Cost and performance of PC and IGCC plants for a range of carbon dioxide capture, DOE, 2013

Steam turbine cycle

The close-loop is open in order to make the system converge faster

- The condition in the downstream of the condenser is known, which is fed into the pump
- The flow rate of the working fluid is determined by the inlet of the HPST

• The net work output of the cycle is calculated as

$$W_{net} = W_{GT} + W_{ST} + W_{EXP} - \sum W_{pump} + \sum W_{CO_2} + \sum W_{O_2} + W_{Selexel} + W_{aux-gasifier} + W_{BOP} + W_{transformer}$$

[1] Kyle A, et al., Cost and performance of PC and IGCC plants for a range of carbon dioxide capture, DOE, 2013

To capture CO₂, water gas shift reactors and acid gas removal systems <u>are installed</u>

- Water gas shift reactor converts CO into CO_2 : CO + $H_2O \rightarrow CO_2 + H_2$
- Selexol processes separate CO₂ and H₂S

IGCC-WGS

Instead, IGCC-OTM system uses a membrane to produce high purity H₂ with CC

- An oxygen permeable membrane can produce ${\rm H}_2$ from water splitting and oxidize the fuel in one unit

>

Membrane reactor

Water splitting side

Syngas oxidation side

• After connecting all the components in Aspen Plus, the operating conditions and parameters have to be entered

Fuel		Compressor (air or N ₂)	
Coal rank	High-volatile A bituminous	Isentropic efficiency (%)	84
	(Illinois No. 6)	Heat exchangers	
	HHV (as-received) = 27.135 MJ	Minimum internal	20
	kg ⁻¹	temperature approach	Heat recovery steam
Raw gas composition	Shown in Table 1	(MITA) (°C)	generators (HRSG): 10 °C
Gasifier		Pressure drop (%)	5
Technology	GEE gasification technology	Steam cycle	
<i>T</i> (°C)	1316	TIT (°C)	560
<i>P</i> (MPa)	5.6	HP turbine inlet pressure	12.5
Gas Turbine		(MPa)	
TIT* (°C)	1371	HP turbine outlet pressure	0.568
Combustor pressure	3.2	(MPa)	
(MPa)		Turbine efficiencies (%)	90
Isentropic efficiency	85	Pump efficiency (%)	75
(%)		Flue gas outlet temperature	132 (or higher due to
		(°C)	constraint of MITA in HRSG)

:	
Selexol process	
Work consumption	Calculated from
	literature
CO ₂ removal efficiency	90
(%)	
H ₂ S removal efficiency	99.6
(%)	
H ₂ recovery efficiency	99.4
(%)	
High temperature gas	cleaning
Operating temperature	~900 °C
(°C)	
H ₂ recovery efficiency (%) <i>High temperature gas</i> Operating temperature (°C)	99.4 cleaning ~900 °C

-	
Membrane reactor	
Operating temperature (°C)	850 °C
Raw gas conversion on side I (%)	99**
Water conversion on side II (%)	54**
Reactor design	See Figure 2 (a)
CO ₂ compressor	
CO ₂ delivery pressure (MPa)	12
Exit CO ₂ stream composition (mol%)	>99% CO ₂ (EOR ready)
Isentropic efficiency (%)	84

Membrane is a user-defined component and its performance has to be <u>determined</u>

• For a counter-flow configuration, the maximum conversion ratios on side I and II are determined

$$\Delta P_{tot} = \left(\frac{1}{2}\frac{\rho V^2}{D_h}\right) \cdot f \cdot L$$

• Sensitivity analysis is carried out to identify the most sensitive membrane parameter and its impacts on the overall efficiency

- We can see that the IGCC-OTM can capture more CO₂, while require less auxiliary load than IGCC-WGS
- This leads to higher efficiency of IGCC-OTM than IGCC-WGS (34.2% v.s. 30.6%)
- The specific primary energy consumption for CO₂ avoided (SPECCA) of this novel technology is 1.08 MJ kgCO₂⁻¹, which is 59% lower than that of the IGCC-WGS

Some examples

- 1. Thermodynamic efficiency of a novel IGCC-CC power plant integrated with an oxygen permeable membrane for hydrogen production and carbon capture (CC)
 (XY Wu, et al., Journal of Advanced Manufacturing and Processing, 2020, under review)
- 2. Dynamic modeling of a flexible Power-to-X plant (G Buffo, et al., Journal of Energy Storage, 2020, 29, 101314)

Example 2: Dynamic simulation

- Here we discuss an example on energy storage using reversible solid oxide cells in a poly-generation system
- Wind power is the major source for energy
- Grid energy is supplement when needed
- Energy consumption:
 - H₂ buses fleet
 - District micro-grid
 - District heating
- Heat storage (molten salt): store SOFC wind power waste heat to preheat steam in SOEC or for district heating

District

micro-grid

• The wind turbine generation is the kinetic energy of the wind, whose speed distribution follows Weibull distribution:

Data for an observational site in Nottingham, UK^[1]

	Average wind speed (\bar{x} , m/s)	Shape factor (k)	Scale factor (β , m/s)
Winter	5.51	2.3	6.225
Spring	5.145	2.61	5.798
Summer	4.261	2.76	4.790
Autumn	4.729	2.3	5.351

[1] S.E. George, United Kingdom Windspeed - Measurement, Climatology, Predictability and Link to Tropical Atlantic Variability

- Electricity demand
 - Monte Carlo bottom-up stochastic model
- H₂ bus fleet demand (high priority)
 - 9 kg-H₂/100 km with 10% excess H₂ in the tank for emergency
 - Base case: 1 million km/year (~ Bus 1 mileage)

Reference demand	of	mobility	hydrogen.
------------------	----	----------	-----------

	Period from	September to May	Period from June to August		
	Weekdays	Weekend days	Weekdays	Weekend days	
L_d (km)	3544	2102	1581	1032	
H _{2,mob,d} (kg)	350.86	208.12	156.46	102.19	

- H₂ storage for SOFC (medium)
- District heating demand (low)
 - Stochastic model

Plant simulation - Steady

• The steady operation of the rSOC plant is modeled using Aspen Plus[™]

 A time-resolved model can interact with the steady state performance map with the temporal profiles of energy demand of the residential district and wind power generation

W _{stack,AC} MW _e	$W_{BoP} \ kW_{e}$	$\begin{array}{c} Q_{stack} \\ MW_{th} \end{array}$	$\begin{array}{c} Q_{BoP} \\ MW_{th} \end{array}$	P _{H2} MW	η _{EL} %	η _{CHP} %
		SOF	C subsystem			
2	46	0.82	0.66	3.88	51.55	78.42
4	95	1.86	1.37	8.04	49.75	78.37
6	148	3.18	2.15	12.6	47.62	78.35
8	207	4.88	3.01	17.6	45.45	78.35
10	274	7.13	3.98	23.3	42.92	78.36
		SOF	C subsystem			
10	- 590	-1.69	-0.57	8.45	84.50	75.11
20	-1080	-1.68	-1.05	15.6	78.00	77.05
30	-1510	-0.60	-1.47	21.8	72.67	78.54
40	-1912	1.24	-1.85	27.5	68.75	79.74
50	-2269	3.67	-2.19	32.7	65.40	80.72

• SOFC-driven: Maximum SOFC operating hours

• SOEC-driven: Maximum SOEC operating hours

Based on the operating dispatch profile, some performance criteria can <u>be evaluated</u>

• Capacity factor

 $CF = rac{Yearly \, energy \, produced \, (consumed)}{nominal \, size \, imes operating \, hours}$

- Efficiency
 - Daily efficiency

$$\eta_{d,p} = \frac{E_{SOFC,d,p} + E_{BOP, SOFC,d,p}}{|E_{SOEC,d,p} + E_{BOP,SOEC,d,p}|}$$
(Energy production is positive)

- Annual efficiency

$$\eta_{y}^{*} = \frac{(E_{SOFC,load,y} + E_{BOP, SOFC,y}) + H_{2,mob,y} \cdot LHV_{H_{2}} + E_{DH,y}}{|E_{SOEC,y} + E_{BOP,SOEC,y}|}$$

- Total CO₂ emission
 - Emission due to the use of grid electricity
 - Emission reduction due to elimination of gas boilers for heating and diesel buses

The potential of CO_2 reduction depends on the hydrogen required for <u>buses</u>

55

- The system has 30-50% CO₂ reduction potential
- The potential drops when more hydrogen is required for the bus fleet

- Energy systems: production, conversion, delivery, and use of energy
- System analysis: efficiency, emissions, economics, societal impacts
- Aspen PlusTM: interface and components
- Examples to do thermodynamic analysis and dynamic simulations

Thanks!

2.60/2.62 lecture Energy system modeling and examples Xiao-Yu Wu

MIT OpenCourseWare https://ocw.mit.edu/

2.60J Fundamentals of Advanced Energy Conversion Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.