Energy & Materials

Dr. Georgios Dimitrakopoulos

Research Scientist Department of Mechanical Engineering Massachusetts Institute of Technology

2.60 Guest Lecture

Question: How many elements exist in an iPhone???

- An iPhone requires 75 elements!
- Human life requires 30 elements!
- Transistors: Si
- CPU: Si, As, P, Ga, Sb, O
- Reinforced glass: Al, Si, K, O
- Battery: Li, Co, Mn, C
- Electronics wiring: Au, Sn, Ag, Cu
- Color display: Y, Gd, Eu, Tb, Pr
- Touch screen: In, Sn, O
- Capacitors: Ta
- Case: Al

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Why are materials needed in energy applications?

- Materials are used in almost every energy conversion device.
- <u>Reason</u>: materials have properties that allow an engineer to design a system according to the expected operating requirements
- Take a typical Solid Oxide Fuel Cell (SOFC), for example:
 - 1. Electronic conductivity (electrodes)
 - 2. Ionic conductivity (electrolyte + electrodes)
 - 3. Mechanical strength (electrolyte + electrodes)
 - 4. Catalytic activity (electrodes)
 - 5. Chemical compatibility under operating conditions of interest (i.e. temperature, gas environment etc.)
 - 6. Porosity/densification
 - a) Electrodes should be porous
 - b) Electrolyte should be 100% dense
 - 7. Material compatibility (electrodes do not react with electrolyte or with impurities from the gases)
 - 8. Others properties

- White: YSZ electrolyte (~10-100μm)
- Black: electrode (~2-10μm)

Real Lab Scale Cell

Solid Oxide Fuel Cells (cont'd)

Electrodes should be porous to increase the available surface area for reactions

Typical Solid Oxide Fuel Cell

Electrolytes should be fully dense (i.e. no gaps) to ensure increasing ionic conductivity, mechanical strength and to minimize gas leakage

But what determines the properties of materials???

Elements, composition and bonding (Materials' Science)

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC). © Encyclopædia Britannica, Inc.

© Encyclopedia Britannica, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

- In general, the properties of materials are dictated by the following characteristics:
 - 1. The elements in the structure of the material
 - 2. The amount of elements in the structure (stoichiometry)
 - 3. The bonding of elements with each other (strong bonds vs. weak bonds)
 - 4. The defects introduced in the material (vacancies, electron, electron holes etc.)
- What makes things difficult (as well as interesting and challenging!):
 - Designing a material has several constraints (i.e. you cannot make every material you want)
 - Properties change according to the operating conditions (temperature, gaseous environment, applied potential etc.)
 - Designing materials requires the use of characterization techniques (*ex-situ* vs. *in-situ*)

Example 1: Yttrium-doped Zirconium Oxide (YSZ)

Effect of Y_2O_3 doping in ZrO_2 on the ionic conductivity

Typical electrolyte has 8% Y₂O₃ doping

Yttrium-doped ZrO₂

- Charge of Zr: +4
- Charge of Y: +3
- Doping Y for Zr creates a charge imbalance that is compensated by oxygen vacancies (defect species)
- Increasing oxygen vacancies increases the ionic conductivity
- Adding more than 8% Y₂O₃ makes vacancies interact with each other, hence reducing the ionic conductivity

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

O'Hayre et. al., Fuel Cell Fundamentals, 2nd Edition

Schottky vs. Frenkel defects (Intrinsic point defects)

Schottky defect: elements leave the crystal leaving behind vacancies

Frenkel defect: an ion leaves its regular lattice site and occupies an interstitial site, leaving behind a vacant site

© Informa UK Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Example 2: Extrinsic point defects within $La_{0.9}Ca_{0.1}FeO_{3-\delta}$

- Extrinsic defects are caused by external influences, such as changes in the gaseous atmosphere, temperature, dopant etc.
- $La_{0.9}Ca_{0.1}FeO_{3-\delta}$ is used as a ceramic membrane or as a SOFC/SOEC electrode.

Ceramics loose oxygen from their crystal structure due to favorable thermodynamics:

Brouwer Diagram

- 1. as the temperature increases
- 2. as the O_2 partial pressure decreases

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

T.C. Geary et. al. Solid State Ionics 253 (2013) 88-93

Example 3: Photovoltaics

© iStockphoto LP. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Maximum theoretical efficiency = 86.8%

Inside a photovoltaic cell

Source: U.S. Energy Information Administration

Image courtesy of U.S. Energy Information Administration.

Example 3: Photovoltaics (cont'd)

Materials' and Systems' Engineering

© GE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

https://www.youtube.com/watch?time_continue=1&v=zcWkEKNvqCA&feature=emb_logo

Example 1: Increasing efficiency while avoiding creep in a gas turbine

GE 9HA Gas Turbine

© GE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

A 605 MW General Electric 9HA can achieve a **Combined Cycle Efficiency of 62.22%** with temperatures as high as **1540°C**. High-Pressure Stage made of Single Crystals

© Pearson Education, Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Example 2: Engineering of the Ni-YSZ anode

- In a Ni-YSZ anode:
 - 1. YSZ provides ionic conductivity
 - 2. Ni provides catalytic activity and electronic conductivity
- However, to create the Ni-YSZ anode, we have to start by mixing Nickel Oxide (NiO) with YSZ
- NiO is a bad electronic conductor and electo-catalyst
- To increase the performance, the NiO-YSZ electrode is heat treated in H₂ so that:
 - 1. NiO transforms to Ni, hence increasing the catalytic activity and electronic conductivity
 - 2. The porosity of the electrode increases (the formation of Ni from NiO leaves behind porosity due to the O removal)

Figure 8. Plot of the reciprocal of the ohmic resistance (electrical conductance) of LSCrF and Ni/YSZ electrodes measured at 500 °C and at open circuit conditions under the indicated gas atmospheres.

13

© ACS Publications. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Materials Science & Engineering for Energy Applications

- To design materials and the corresponding energy conversion systems, we need:
 - 1. To synthesize the material
 - 2. To characterize the material:
 - a) Crystal structure
 - b) Microstructure
 - c) Properties (electronic conductivity etc.)
 - 3. To shape materials
 - 4. To integrate materials with other components of the system
 - 5. To test the system
 - 6. To iterate (at the end and during each step)!!
 - a) Identify problems
 - b) Improve the material and its integration to the system

Material synthesis in powder form (the most important step!!!)

- The synthesis of the material in powder form is the first and most important part of the material design
- This is because the powder characteristics (particle size, morphology and surface area) affect the properties of the material
- To synthesize a material, we need:
 - 1. The precursors: the raw materials
 - 2. Mixing of the precursors remembering that you are inducing a reaction!
 - 3. Heat treatment to enable cation diffusion (Calcination) (Cation diffusion is like gas or liquid mixing!!)
- Example: synthesis of 8-YSZ using the solid-state method
 - 1. Precursors: Y₂O₃ and ZrO₂
 - Mixing in the appropriate ratio (8% Y₂O₃ and 92% ZrO₂ on molar basis, V stands for oxygen vacancies due to charge imbalance)

 $0.92 \ \text{ZrO}_2 + 0.08 \ \text{Y}_2\text{O}_3 \rightarrow \text{Zr}_{0.92}\text{Y}_{0.16}\text{O}_{2.08}\text{V}_{0.08}$

3. Increase the temperature to 1400-1500C

1400-1500C

 $Zr_{0.92}Y_{0.16}O_{2.08}V_{0.08}$

How do we know if a material is synthesized as expected?

- X-Ray Diffraction (XRD)
- XRD allows identification of the phases that exist in the bulk of the material
- Similarly to humans, XRD provides a pattern that is the "DNA" of the material
- Operating Principle:
 - 1. X-ray's bombard a sample under a specific angle
 - 2. Electron are scattered
 - 3. A detector measures the number of electrons scattered as the angle changes
- Bragg's law: $2d \sin\theta = n\lambda$
- d: distance between 2 planes
- θ : incident angle
- λ : wavelength of the incident wave
- n: positive integer

Examples of XRD patterns of materials synthesized using the solid-state method

© Oriental Journal of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

S. Mago et. al. Oriental Journal of Chemistry 34 (5) 2018

X-ray diffraction (XRD) patterns of 20-hour milled powder, followed by heat treatment at (a) 700 °C for 1 hour, (b) 700 °C for 5 h, (c) 700 °C for 10 h, (d) 800 °C for 1 h, (e) 800 °C for 5 h.

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

S.M. Salili et. al. Materials Characterization 105 (2015) 78-85

Dry vs. wet synthesis methods

- Dry methods: manual mixing of powder precursors
- Wet methods: use precursors diluted in H₂O plus a chelating agent to bring cations closer
- Advantages of wet methods
 - 1. Better control of stoichiometry
 - 2. Better mixing
 - 3. Lower calcination temperature
 - 4. Less contaminations

Example: synthesis of 8-YSZ using a wet method

- 1. Precursors: $Y(NO_3)_3 \cdot 6H_2O$ and $ZrO(NO_3)_2 \cdot xH_2O$
- 2. Use citric acid, EDTA, glycine as a chelating agent

 $\begin{array}{l} 0.92 \; (ZrO(NO_3)_2 \cdot xH_2O) + 0.08 \; (Y(NO_3)_3 \cdot 6H_2O) \; + \\ C_2H_5NO_2 \rightarrow Zr_{0.92}Y_{0.16}O_{2.08}V_{0.08} + aNO_x + bCO_2 + cCO + ... \end{array}$

- 3. Dilute these in purified H_2O and then dehydrate the solution
- 4. Calcination of the ash at high temperature

Fig. 6 X-ray diffraction patterns of the YSZ powders prepared from dried gel calcined at a 650 °C/2 h, b 730 °C/2 h and c 800 °C/2 h

© Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

- Wet synthesis using Citric Acid and Ethylene Glycol
- YSZ synthesized at 650C!!
- Compare that to the solid state method, which requires calcination temperatures ~1400C!

An example of a wet synthesis method in Prof. Ghoniem's lab

Important: do not try this at home!!

- Materials are synthesized in this way using proper equipment and safety measures
- Synthesis of LSM using glycine as the chelating agent
- First, precursors are mixed to create an aqueous solution
- Then, the mixture is placed on a hot plate (540C) to evaporate the H_2O and combust the mixture
- When most of H₂O has evaporated, autoignition of the solid mixture happens instantaneously (note the flame front)
- Also note:
 - Aqueous solution is white
 - LSM powder (raw ash) is black
- To obtain LSM, the raw ash is collected and calcined at high T (800C, 1h)

Example: synthesis of $La_{0.8}Sr_{0.2}CrO_{3-\delta}$ (LSCr)

- LSCr is used in SOFCs as an interconnect material or as an electrode
- Adjusting the pH of the aqueous precursor solution and the amount of Glycine changes the powder morphology and size
- If a dense material is required, options
 (a) and (c) are the best
- If a porous material is required, the rest of the options are viable
- To choose the best one, one has to measure the surface area of the material
- Surface area: Brunauer–Emmett–Teller (BET) method

Fig. 5. SEM photographs of La0.8Sr0.2CrO3 powders calcined at 1000 °C with various pH values and glycine-to-nitrate ratios. (a) pH = 3, 1:1 (b) pH = 2, 1:1 (c) pH = 1, 1:1 (d) pH = 3, 1.5:1 (e) pH = 2, 1.5:1 (f) pH = 1, 1.5:1 (g) pH = 3, 2:1 (h) pH = 2, 2:1 (i) pH = 1, 2:1. Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission. 20

E. Thomas et al. Ceramics International 37 (2011) 2269-2274

Sintering of ceramics

- To create a useful part, the powder has to be shaped using an appropriate method.
- To achieve high densification of a ceramic part, sintering at high temperatures is required (1200C-1600C depending on the material)
- Sintering of the part is a major challenge because:
 - 1. The material shrinks during the sintering process
 - 2. Properties of the material depend highly on the microstructure and gran/grain boundary distribution!
- Parameters that affect the sintering of ceramics:
 - 1. Surface free energy: curvature of particles provides a driving force for densification in order to decrease the surface free energy
 - 2. Applied pressure: bring particles together while minimizing gaps (can be done before or during the sintering process)
 - 3. Chemical reaction: change the gaseous environment to make it react with the solid (not frequently employed because the material's microstructure cannot be easily controlled)

M.N. Rahaman, Sintering of Ceramics: Fundamentals, CRC Press, 2007

Driving forces leading to sintering of ceramics

Replacement of free surfaces (a) by grain boundaries (b) during the densification of polycrystalline systems.

21

© Informa UK Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

What is a grain boundary???

- Grain boundaries are 2D defects
- They are internal boundaries inside a crystal
- Lattice orientation changes on the gran boundary

Same lattice – different orientation!!

Single crystal: lattice orientation is the same throughout the material

Polycrystalline material: lattice orientation is different throughout the material

Example 1: Normal vs. Abnormal Grain Growth

- Abnormal grain growth should be avoided ٠
- It affects the density and the properties of the materials ٠

© Informa UK Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse. 23

M.N. Rahaman, Sintering of Ceramics: Fundamentals, CRC Press, 2007

Shaping of the powder into a useful part

- For dense ceramic oxides, several shaping methods exist:
 - 1. Casting (industrial scale)
 - 2. Uniaxial/Isostatic cold/warm pressing (lab scale)
 - 3. Tape casting (industrial scale thin flat plates)
 - 4. Phase inversion method (industrial scale)
 - 5. Laser sintering (still in lab scale)
 - 6. Additive manufacturing (early stages, few materials)
- There are 2 methods frequently employed:
 - 1. Shaping of the powder at room temperature followed by sintering at high temperature
 - 2. Simultaneous shaping and sintering at high temperatures
- Machining of ceramic oxides using conventional techniques is usually avoided because ceramic oxides are very brittle.

Casting (industrial scale)

Casting of Ceramics

© Encyclopedia Britannica, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Aluminum Oxide (Al₂O₃) Tubes

© LSP Industrial Ceramics, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Gas Turbine Blade

© YXLON. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Uniaxial/isostatic, cold/warm pressing

Cold uniaxial pressing

Cold isostatic pressing

- Cold pressing: compaction of powder at room temperature followed by sintering at high temperatures
- Warm pressing: compaction of powder and sintering at the same time

Tape casting

- Tape casting can only produce ceramics in the form of sheets
- Advantages:
 - 1. Most popular method of ceramic shaping in industry due to low cost
 - Thickness of ceramics is low (~5µm) and can be controlled by the doctor blade in a repetitive manner
 - 3. Ceramics with different layers can be made
- Disadvantages:
 - the slurry includes the powder and additives (binder, plasticizer etc.) and the amount of each has to be optimized for each material based on trial and error and experience
 - 2. Drying and de-binding also has to be optimized
- Electrolytes are mainly fabricated through tape casting

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

M. Jabbari et al. Materials Science and Engineering B 212 (2016) 39-61²⁷

Example: effect of slurry composition and thermal treatment on final ceramic

© MDPI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Phase inversion

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Phase inversion is suitable for flat or tubular ceramics

Process:

- 1. Create a suspension of the material including additives
- 2. Cast the suspension using a blade
- 3. Immerse into a bath to enable coagulation

A $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ membrane used for O_2 separation from air made using the phase-inversion technique.

T. Li et. al. J. Membrane Science 578 (2019) 203-208

Phase inversion

YouTube screenshot has been removed due to copyright restrictions. Please click the link below to see the video.

Rapid Laser Reactive Sintering

Schematic description of rapid laser reactive sintering (RLRS) process. (a) Mix precursor solids, (b) prepare precursor paste, (c) deposit precursor layer, and (d) perform RLRS

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

Additive manufacturing of SiC turbine nozzle (still on its early stages)

© The American Ceramic Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

M.C. Halbig et. al. 11th Int. Conf. on Ceramic Materials & Components for En. & Environ. Apps., Vancouver, B.C., Canada, June 14-19, 2015

Computational methods in Material Science

- Given the availability of computational resources, the use of computational models for the prediction of material properties has increased during the last decades.
- Modeling is important because it allows to obtain information that we cannot extract directly through measurements.
- Models exist in all scales depending on the scientific/engineering question that needs to be answered.
- All models are based on assumptions!
- Each model has it's own limitations depending on the scale it is formulated for!
- What is important is to know:
 - 1. The question you want to answer
 - 2. Which model will give an answer
 - 3. How fast and/or how accurate will the answer be

Temperature/K Contour 1 1.203e+003 1.167e+003 1.130e+003 1.094e+0031.057e+003 1.021e+003 9.839e+002 9.474e+002 9.108e+002 8.742e+002 8.377e+002 8.011e+002 7.645e+002 7.280e+002 6.914e+002

Temperature (left) and creep (right) profiles for a gas turbine blade M.R. Reyhani et. al. Propulsion and Power Research 2013;2(2):148-161

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

If the question is to understand the creep behavior, we will use a continuous model, i.e. we are not going to calculate creep induced by elements in the atomic scale, which will take forever!!

Computational methods depending on the scale of interest

More detailed models take longer to run!!!

CFD models for design of reactors based on ceramic materials

Design of tubular ceramic membranes using state-of-the-art defect chemistry models

Micro-kinetic models for fuel cells

Simplified modeling of an I-V curve

 $V = E_{thermo} - \eta_{act} - \eta_{ohmic} - \eta_{conc}$

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

O'Hayre et. al., Fuel Cell Fundamentals, 2nd Edition

Heterogeneous reaction mechanism on Ni-based catalysts

Reaction	A^{a}	n	E^{a}
$H_2 + (Ni) + (Ni) \rightarrow H(Ni) + H(Ni)$	$1.000 \cdot 10^{-02b}$	0.0	0.00
$H(Ni) + H(Ni) \rightarrow (Ni) + (Ni) + H_2$	5.593 · 10+19	0.0	88.12
$O_2 + (Ni) + (Ni) \rightarrow O(Ni) + O(Ni)$	$1.000 \cdot 10^{-02b}$	0.0	0.00
$O(Ni) + O(Ni) \rightarrow (Ni) + (Ni) + O_2$	$2.508 \cdot 10^{+23}$	0.0	470.39
$CH_4 + (Ni) \rightarrow CH_4(Ni)$	8.000 · 10 ^{-03b}	0.0	0.00
$CH_4(Ni) \rightarrow (Ni) + CH_4$	5.302 · 10 ⁺¹⁵	0.0	33.15
$H_2O + (Ni) \rightarrow H_2O(Ni)$	$1.000 \cdot 10^{-01b}$	0.0	0.00
$H_2O(Ni) \rightarrow (Ni) + H_2O$	4.579 · 10 ⁺¹²	0.0	62.68
$CO_2 + (Ni) \rightarrow CO_2(Ni)$	1.000 · 10 ^{-05b}	0.0	0.00
$CO_2(Ni) \rightarrow (Ni) + CO_2$	9.334 · 10 ⁺⁰⁷	0.0	28.80
$CO + (Ni) \rightarrow CO(Ni)$	5.000 · 10 ^{-01b}	0.0	0.00
$CO(Ni) \rightarrow (Ni) + CO$	$4.041 \cdot 10^{+11}$	0.0	112.85
	€CO(s)		-50.0°
$O(Ni) + H(Ni) \rightarrow OH(Ni) + (Ni)$	$5.000 \cdot 10^{+22}$	0.0	97.90
$OH(Ni) + (Ni) \rightarrow O(Ni) + H(Ni)$	$2.005 \cdot 10^{+21}$	0.0	37.19
$OH(Ni) + H(Ni) \rightarrow H_2O(Ni) + (Ni)$	$3.000 \cdot 10^{+20}$	0.0	42.70
$H_2O(Ni) + (Ni) \rightarrow OH(Ni) + H(Ni)$	$2.175 \cdot 10^{+21}$	0.0	91.36
$OH(Ni) + OH(Ni) \rightarrow O(Ni) + H_2O(Ni)$	$3.000 \cdot 10^{+21}$	0.0	100.00
$O(Ni) + H_2O(Ni) \rightarrow OH(Ni) + OH(Ni)$	5.423 · 10 ⁺²³	0.0	209.37
$O(Ni) + C(Ni) \rightarrow CO(Ni) + (Ni)$	$5.200 \cdot 10^{+23}$	0.0	148.10
$CO(Ni) + (Ni) \rightarrow O(Ni) + C(Ni)$	$1.418 \cdot 10^{+22}$	-3.0	115.97
	€CO(s)		-50.0°
$O(Ni) + CO(Ni) \rightarrow CO_2(Ni) + (Ni)$	$2.000 \cdot 10^{+19}$	0.0	123.60
	€CO(s)		-50.0°
$CO_2(Ni) + (Ni) \rightarrow O(Ni) + CO(Ni)$	$3.214 \cdot 10^{+23}$	-1.0	86.50
$HCO(Ni) + (Ni) \rightarrow CO(Ni) + H(Ni)$	3.700 · 10 ⁺²¹	0.0	0.0
	€CO(s)		50.0 ^c
$CO(Ni) + H(Ni) \rightarrow HCO(Ni) + (Ni)$	$2.338 \cdot 10^{+20}$	-1.0	127.98
$HCO(Ni) + (Ni) \rightarrow O(Ni) + CH(Ni)$	$3.700 \cdot 10^{+24}$	-3.0	95.80
$O(Ni) + CH(Ni) \rightarrow HCO(Ni) + (Ni)$	7.914 · 10 ⁺²⁰	0.0	114.22
$CH_4(Ni) + (Ni) \rightarrow CH_3(Ni) + H(Ni)$	$3.700 \cdot 10^{+21}$	0.0	57.70
$CH_3(Ni) + H(Ni) \rightarrow CH_4(Ni) + (Ni)$	4.438 · 10 ⁺²¹	0.0	58.83
$CH_3(Ni) + (Ni) \rightarrow CH_2(Ni) + H(Ni)$	$3.700 \cdot 10^{+24}$	0.0	100.00
$CH_2(Ni) + H(Ni) \rightarrow CH_3(Ni) + (Ni)$	9.513 · 10+22	0.0	52.58
$CH_2(Ni) + (Ni) \rightarrow CH(Ni) + H(Ni)$	$3.700 \cdot 10^{+24}$	0.0	97.10
$CH(Ni) + H(Ni) \rightarrow CH_2(Ni) + (Ni)$	$3.008 \cdot 10^{+24}$	0.0	76.43
$CH(Ni) + (Ni) \rightarrow C(Ni) + H(Ni)$	$3.700 \cdot 10^{+21}$	0.0	18.80
$C(Ni) + H(Ni) \rightarrow CH(Ni) + (Ni)$	$4.400 \cdot 10^{+22}$	0.0	160.49
$O(Ni) + CH_4(Ni) \rightarrow CH_3(Ni) + OH(Ni)$	$1.700 \cdot 10^{+24}$	0.0	88.30
$CH_3(Ni) + OH(Ni) \rightarrow O(Ni) + CH_4(Ni)$	8.178 · 10 ⁺²²	0.0	28.72
$O(Ni) + CH_3(Ni) \rightarrow CH_2(Ni) + OH(Ni)$	3.700 · 10 ⁺²⁴	0.0	130.10
$CH_2(Ni) + OH(Ni) \rightarrow O(Ni) + CH_3(Ni)$	$3.815 \cdot 10^{+21}$	0.0	21.97
$O(Ni) + CH_2(Ni) \rightarrow CH(Ni) + OH(Ni)$	3.700 · 10 ⁺²⁴	0.0	126.80
$CH(Ni) + OH(Ni) \rightarrow O(Ni) + CH_2(Ni)$	$1.206 \cdot 10^{+23}$	0.0	45.42
$O(Ni) + CH(Ni) \rightarrow C(Ni) + OH(Ni)$	3.700 · 10 ⁺²¹	0.0	48.10
$C(Ni) + OH(Ni) \rightarrow O(Ni) + CH(Ni)$	$1.764 \cdot 10^{+21}$	0.0	129.08

© The Electrochemical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

H. Zhu et. al. Journal of The Electrochemical Society, 152 (12) (2005) A2427-A2440

Density Functional Theory (DFT)

• In DFT, one solves for the so-called Kohn-Sham equations (not the Schrödinger equation):

$$\left[-\frac{\hbar}{2m}\nabla^2 + V(\mathbf{r}) + V_{\mathrm{H}}(\mathbf{r}) + V_{\mathrm{XC}}(\mathbf{r})\right]\psi_{\mathrm{i}}(\mathbf{r}) = \varepsilon_{\mathrm{i}}\psi_{\mathrm{i}}(\mathbf{r}) \quad (1)$$

Electron	Electron-	Electron-	Exchange-
Kinetic	Nuclei	Electron	Correlation
Energy	Interaction	Interaction	Functional

• V_H and V_{XC} are a function of the electron density $n(\mathbf{r})$:

$$n(\mathbf{r}) = 2\sum_{i} \psi_{i}^{*}(\mathbf{r})\psi_{i}(\mathbf{r})$$
(2)

- Iterative algorithm:
 - 1. Assume an electron density $n(\mathbf{r})$
 - 2. Solve the Kohm-Sham equations to compute $\psi_i(\boldsymbol{r})$ using equation (1)
 - 3. Calculate the updated electron density $n(\mathbf{r})$ using equation (2)
 - If n(r) of steps 1 and 3 are the same, the ground energy has been determined. If not, n(r) has to be updated and the algorithm is repeated.

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Example 1: DFT calculations for catalysis and Li-ion electrolytes

© National Academy of Sciences. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Y. He et. al. PNAS 115 (30) (2018) 7700-7705

Lithium garnets (Li-ion battery electrolytes)

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

A. Logéat et al. Solid State Ionics 206 (2012) 33-38

Example 2: DFT Calculations of Oxygen Reduction on Pt

J.K. Norskov et. al. J. Phys. Chem. B 2004, 108, 17886-17892

High-throughput screening of materials: Thermoelectric materials (1)

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Computational Screening

G. Samsonidze et al. Adv. Energy Mater. 2018, 8, 1800246

Can the predicted materials be synthesized?

High-throughput screening of materials: Photovoltaics (2)

Elemental chemicals A-B-X or A-X precursor (28 solid precursors) A-B'-B"-X (13 total) **B**-cation A-cation solution X-anion precursors Sb³⁺ MA⁺ K⁺ Bi³⁺ Pb2+ (96 test compositions) + = Ca2+ Sn²⁺ FA⁺ Rb⁺ Cu2+ Br **B-X** precursor (15 total) Cs⁺ Cu+ Na⁺ Ag* Na⁺ CI-......... Deposition X-ray diffraction Amorphous glass UV-Vis substrate Annealing Spectroscopy (ozone treated) Time/batch 2 hours 4 hours 6 hours 8 hours (On average 9 samples/batch)

Experimental Screening

Sun et al., Joule 3 (2019) 1437-1451

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

Summary

- Materials are part of every energy conversion technology
- This presentation covered several energy conversion technologies involving the use of materials with focus on ceramic oxides
- Defect chemistry in materials
- Synthesis of materials
- Shaping of materials
- Computational methods
- High-throughput screening

© Source unknown. All rights reserved. This content is excluded from our Creative 42 Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>. MIT OpenCourseWare https://ocw.mit.edu/

2.60J Fundamentals of Advanced Energy Conversion Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.