50. Ado’s theorem

50.1. The nilradical. Consider now a solvable Lie algebra a over C
and its adjoint representation. By Lie’s theorem, in some basis a acts
in this representation by upper triangular matrices. Let n C a be the
subset of nilpotent elements (the nilradical of a). Thus n is the set of
x € a that act in this basis by strictly upper triangular matrices. In
particular, n D [a, a], so a/n is abelian.

Proposition 50.1. If d : a — a is a deriwation then d(a) C n. Thus
if a = rad(g) is the radical of g then g acts trivially on a/n.

Proof. The derivation d defines a solvable Lie algebra a := Cd x a, so
[a,a] C a consists of nilpotent elements. In particular it lies in n.** O

50.2. Algebraic Lie algebras. Let us say that a finite dimensional
complex Lie algebra g is algebraic if g is the Lie algebra of a group
G = K x N, where K is a reductive group and N a unipotent group.
It turns out that this is equivalent to being the Lie algebra of an affine
algebraic group over C (i.e., a closed subgroup in GL, (C) defined by
polynomial equations), which motivates the terminology.

A finite dimensional complex Lie algebra need not be algebraic:

Example 50.2. Let g; be a 3-dimensional Lie algebra with basis d, z, y
and [z,y] = 0, [d,x] = z, [d,y] = V2y. Similarly, let g, have basis
d,z,y with [z,y] = 0, [d,z] = z, [d,y] = y + . Then gy, go are not
algebraic (check it!).

Nevertheless, we have the following proposition.

Proposition 50.3. Any finite dimensional complex Lie algebra is a
Lie subalgebra of an algebraic one.

Proof. Let us say that g is n-algebraic if it is the Lie algebra of a group
G = K x A, where K is reductive and a = Lie(A) is solvable with
dim(a/n) < n, where n is the nilradical of a. Thus 0-algebraic is the
same as algebraic. Note that for any g we have the Levi decomposition
g = gss X a, where a = rad(g), which shows that any g is n-algebraic
for some n. So it suffices to show that any n-algebraic Lie algebra for
n > 0 embeds into an n — 1-algebraic one.

42Here is another proof of this proposition. The one-parameter group e*¢ of
automorphisms of a preserves the set of characters of a occurring in its adjoint
representation. Hence must preserve each of them individually, as there are finitely
many and this group is connected. But by definition of n these characters span
(a/n)*. Thus d acts trivially on a/n.
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To this end, let g = Lie(G) be n-algebraic, with G = K x A and A
simply connected. Let a = Lie(A), so dim(a/n) =n. Pickd € a,d ¢ n
such that d is K-invariant. This can be done since by Proposition
50.1 K acts trivially on a/n and its representations are completely
reducible. We have a decomposition a = @!_,a[;] of a into generalized
eigenspaces of d. It is clear that K preserves each a[3;]. Pick a character
X : a = C such that x(d) = 1.

Consider the subgroup I' of C generated by (; and let ay, ..., a;;, be
a basis of I, so that 3; = >, b for by € Z. Let T = (C*)™ and
make 7" act on G so that it commutes with K and acts on a[8;] by
(21, s 2m) = [, z;” Now consider the group G = (K x T) x A.

Let o' C Lie(T) x a C Lie(G) be spanned by Kery and d — a where
a = (ai,...,a,) € Lie(T). Then the nilradical n’ of o’ is spanned by
n and d — « (as the latter is nilpotent). Moreover, if A’ is the simply
connected group corresponding to ', then (K xT)x A= (K xT)x A’
Thus, the Lie algebra § := Lie(G) is n — 1-algebraic (as dim(a’ /)
n — 1), and it contains g, as claimed.

Ol

Example 50.4. The Lie algebras g;, g, in the Example 50.2 are 1-
algebraic.

To embed g; into an algebraic Lie algebra, add element § with [§, z] =
0, [6,y] =y, [0,d] = 0. Then the Lie algebra g} spanned by d,d, z,y
is b @ b, where b is the non-abelian 2-dimensional Lie algebra (so it
is algebraic). Namely, the first copy of b is spanned by d,y and the
second by d — /26, z.

To embed g, into an algebraic Lie algebra, add element § with [d, 2] =
0, [6,y] = x, [6,d] = 0. Then the Lie algebra g/, spanned by §,d, z,y
is C x ‘H, where H is the 3-dimensional Heisenberg Lie algebra with
basis §, z,y, and C is spanned by d — 0 (so it is algebraic, as d — § acts
diagonalizably with integer eigenvalues).

50.3. Faithful representations of nilpotent Lie algebras. Let n
be a finite dimensional nilpotent Lie algebra over C. In this subsection
we will show that n has a finite dimensional faithful representation.

To this end, recall that by Theorem 49.1, n = Lie(N) where N is a
simply connected Lie group, and the exponential map exp : n — N is
bijective. Moreover, the multiplication law of N, when rewritten on n
using the exponential map, is given by polynomials.

Proposition 50.5. Let O(N) be the space of polynomial functions on
N =n (identified using the exponential map). Then O(N) is invariant

under the action of n by left-invariant vector fields. Moreover, we have
272



a canonical filtration O(N) = Up>1V,,, where V,, C O(N) are finite
dimensional subspaces such that Vi C Vo C ... and nV,, C V,,_1.

Proof. Let 1 : n x n — n be the polynomial multiplication law. Let
x € n and L, be the corresponding left-invariant vector field. Let
f € O(N) = Sn*. Then for y € n we have

d
(Lef) ) = S lemof (1l t2)).
Since f and p are polynomials, this is clearly a polynomial in y. Thus
L,:O(N)— O(N).
We have a lower central series filtration on n:
n= Dy(n) D [n,n] =Di(n) D...D D,y(n)=0.
This gives an ascending filtration
0= Do(n)= C....C Dp(n)*t =n".

We assign to D;(n)* filtration degree ¢/, where d is a sufficiently large
positive integer. This gives rise to an ascending filtration F'* on Sn* =
O(N). Note that

wa,y) =z +y+ > Qilzy),

i>1
where @Q; : n X n — [n,n] has degree ¢ in z. Thus

(Laf) () = (02f) () + (91 @) F)(W)-

The first term clearly lowers the degree, and so does the second one if
d is large enough. So we may take V,, = F,(Sn*) to be the space of
polynomials of degree < n, then L,V,, C V,,_1, as claimed. ([l

Example 50.6. We illustrate this proof on the example of the Heisen-
berg algebra H = (x,y, c) with [z,y] = c and [z, ¢] = [y, ] = 0. In this
case

etmesy — et:v+sy+%tsc
so writing u = px + qy + rc € ‘H, we get

w((p1,q1,71), (P2, G2572)) = (P1 + P2, 1 + @2, 71 + 72 + %(plfh — paq1)).

Thus

L.=0,, L,=0,— %q@h L,=0,+ %p&,.
We have Di(H) = Cc, so Di(H)* is spanned by p,q. Thus we have
deg(p) = deg(q) = d, deg(r) = d*. So for any d > 1, L., L,, L, lower
the degree. So setting V,, = F,(SH*) to be the (finite dimensional)

space of polynomials of degree < n, we see that L., L., L, map V,, to

Vi1
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Corollary 50.7. Fvery finite dimensional nilpotent Lie algebra n over
C has a faithful finite dimensional representation where all its elements
act by nilpotent operators. Thus n is isomorphic to a subalgebra of the
Lie algebra of strictly upper triangular matrices of some size.

Proof. By definition, O(N) is a faithful n-module. Hence so is V,, for
some 7. O

50.4. Faithful representations of general finite dimensional Lie
algebras.

Theorem 50.8. (Ado’s theorem) Fvery finite dimensional Lie algebra
over C has a finite dimensional faithful representation.

Proof. Let g be a finite dimensional complex Lie algebra. By Proposi-
tion 50.3, g can be embedded into an algebraic Lie algebra, so we may
assume without loss of generality that g is algebraic. Thus g = Lie(G)
where G = K x N for reductive K and unipotent N. Also we may
assume that g # g’ @ g” for g/, g” # 0, otherwise the problem reduces
to a smaller algebraic Lie algebra (indeed if V', V" are faithful repre-
sentations of g', g” then V'@ V" is a faithful representation of g’ ® g").
Then £ = Lie(K) acts faithfully on n = Lie(/N). Now, g acts on O(N)
preserving the subspaces V,, (n = Lie(N) acts by left invariant vector
fields and ¢ by the adjoint action).

As we have shown in the proof of Corollary 50.7, n acts faithfully on
V,, for some n. We claim that this V,, is, in fact, a faithful representation
of the whole g, which implies the theorem. Indeed, let a C g be the
ideal of elements acting by zero on V,,, and let @ be the projection of a
to ¢ (an ideal in €). Since n acts faithfully on V,,, we have a Nn = 0.
Given a € a, we have a = @ + b where @ € a is the projection of a and
b € n. For z € n we have [a,z] € ann = 0. Thus [a, z] = —[b, z]. Hence
the operator z +— [a@,z] on n is nilpotent. So @ acts on n by nilpotent
operators. Since K is reductive and a C ¢ is an ideal, this means that
a acts on n by zero. Thus @ =0 and a C n. Hence a = 0. U
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