
50. Ado’s theorem

50.1. The nilradical. Consider now a solvable Lie algebra a over C
and its adjoint representation. By Lie’s theorem, in some basis a acts
in this representation by upper triangular matrices. Let n ⊂ a be the
subset of nilpotent elements (the nilradical of a). Thus n is the set of
x ∈ a that act in this basis by strictly upper triangular matrices. In
particular, n ⊃ [a, a], so a/n is abelian.

Proposition 50.1. If d : a → a is a derivation then d(a) ⊂ n. Thus
if a = rad(g) is the radical of g then g acts trivially on a/n.

Proof. The derivation d defines a solvable Lie algebra ã := Cd n a, so
[ã, ã] ⊂ a consists of nilpotent elements. In particular it lies in n.42 �

50.2. Algebraic Lie algebras. Let us say that a finite dimensional
complex Lie algebra g is algebraic if g is the Lie algebra of a group
G = K nN , where K is a reductive group and N a unipotent group.
It turns out that this is equivalent to being the Lie algebra of an affine
algebraic group over C (i.e., a closed subgroup in GLn(C) defined by
polynomial equations), which motivates the terminology.

A finite dimensional complex Lie algebra need not be algebraic:

Example 50.2. Let g1 be a 3-dimensional Lie algebra with basis d, x, y
and [x, y] = 0, [d, x] = x, [d, y] =

√
2y. Similarly, let g2 have basis

d, x, y with [x, y] = 0, [d, x] = x, [d, y] = y + x. Then g1, g2 are not
algebraic (check it!).

Nevertheless, we have the following proposition.

Proposition 50.3. Any finite dimensional complex Lie algebra is a
Lie subalgebra of an algebraic one.

Proof. Let us say that g is n-algebraic if it is the Lie algebra of a group
G := K n A, where K is reductive and a = Lie(A) is solvable with
dim(a/n) ≤ n, where n is the nilradical of a. Thus 0-algebraic is the
same as algebraic. Note that for any g we have the Levi decomposition
g = gss n a, where a = rad(g), which shows that any g is n-algebraic
for some n. So it suffices to show that any n-algebraic Lie algebra for
n > 0 embeds into an n− 1-algebraic one.

42Here is another proof of this proposition. The one-parameter group etd of
automorphisms of a preserves the set of characters of a occurring in its adjoint
representation. Hence must preserve each of them individually, as there are finitely
many and this group is connected. But by definition of n these characters span
(a/n)∗. Thus d acts trivially on a/n.
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To this end, let g = Lie(G) be n-algebraic, with G = K n A and A
simply connected. Let a = Lie(A), so dim(a/n) = n. Pick d ∈ a, d /∈ n
such that d is K-invariant. This can be done since by Proposition
50.1 K acts trivially on a/n and its representations are completely
reducible. We have a decomposition a = ⊕ri=1a[βi] of a into generalized
eigenspaces of d. It is clear thatK preserves each a[βi]. Pick a character
χ : a→ C such that χ(d) = 1.

Consider the subgroup Γ of C generated by βi and let α1, ..., αm be
a basis of Γ, so that βi =

∑
j bijαj for bij ∈ Z. Let T = (C×)m and

make T act on G so that it commutes with K and acts on a[βi] by

(z1, ..., zm) 7→
∏

j z
bij
j . Now consider the group G̃ := (K × T ) n A.

Let a′ ⊂ Lie(T ) n a ⊂ Lie(G̃) be spanned by Kerχ and d − α where
α = (α1, ..., αm) ∈ Lie(T ). Then the nilradical n′ of a′ is spanned by
n and d − α (as the latter is nilpotent). Moreover, if A′ is the simply
connected group corresponding to a′, then (K×T )nA ∼= (KnT )nA′
Thus, the Lie algebra g̃ := Lie(G̃) is n − 1-algebraic (as dim(a′/n′) =
n− 1), and it contains g, as claimed. �

Example 50.4. The Lie algebras g1, g2 in the Example 50.2 are 1-
algebraic.

To embed g1 into an algebraic Lie algebra, add element δ with [δ, x] =
0, [δ, y] = y, [δ, d] = 0. Then the Lie algebra g′1 spanned by δ, d, x, y
is b ⊕ b, where b is the non-abelian 2-dimensional Lie algebra (so it
is algebraic). Namely, the first copy of b is spanned by δ, y and the
second by d−

√
2δ, x.

To embed g2 into an algebraic Lie algebra, add element δ with [δ, x] =
0, [δ, y] = x, [δ, d] = 0. Then the Lie algebra g′2 spanned by δ, d, x, y
is C n H, where H is the 3-dimensional Heisenberg Lie algebra with
basis δ, x, y, and C is spanned by d− δ (so it is algebraic, as d− δ acts
diagonalizably with integer eigenvalues).

50.3. Faithful representations of nilpotent Lie algebras. Let n
be a finite dimensional nilpotent Lie algebra over C. In this subsection
we will show that n has a finite dimensional faithful representation.

To this end, recall that by Theorem 49.1, n = Lie(N) where N is a
simply connected Lie group, and the exponential map exp : n → N is
bijective. Moreover, the multiplication law of N , when rewritten on n
using the exponential map, is given by polynomials.

Proposition 50.5. Let O(N) be the space of polynomial functions on
N ∼= n (identified using the exponential map). Then O(N) is invariant
under the action of n by left-invariant vector fields. Moreover, we have
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a canonical filtration O(N) = ∪n≥1Vn, where Vn ⊂ O(N) are finite
dimensional subspaces such that V1 ⊂ V2 ⊂ ... and nVn ⊂ Vn−1.

Proof. Let µ : n × n → n be the polynomial multiplication law. Let
x ∈ n and Lx be the corresponding left-invariant vector field. Let
f ∈ O(N) = Sn∗. Then for y ∈ n we have

(Lxf)(y) =
d

dt
|t=0f(µ(y, tx)).

Since f and µ are polynomials, this is clearly a polynomial in y. Thus
Lx : O(N)→ O(N).

We have a lower central series filtration on n:

n = D0(n) ⊃ [n, n] = D1(n) ⊃ ... ⊃ Dm(n) = 0.

This gives an ascending filtration

0 = D0(n)⊥ ⊂ .... ⊂ Dm(n)⊥ = n∗.

We assign to Dj(n)⊥ filtration degree dj, where d is a sufficiently large
positive integer. This gives rise to an ascending filtration F • on Sn∗ =
O(N). Note that

µ(x, y) = x+ y +
∑
i≥1

Qi(x, y),

where Qi : n× n→ [n, n] has degree i in x. Thus

(Lxf)(y) = (∂xf)(y) + (∂Q1(x,y)f)(y).

The first term clearly lowers the degree, and so does the second one if
d is large enough. So we may take Vn = Fn(Sn∗) to be the space of
polynomials of degree ≤ n, then LxVn ⊂ Vn−1, as claimed. �

Example 50.6. We illustrate this proof on the example of the Heisen-
berg algebra H = 〈x, y, c〉 with [x, y] = c and [x, c] = [y, c] = 0. In this
case

etxesy = etx+sy+ 1
2
tsc,

so writing u = px+ qy + rc ∈ H, we get

µ((p1, q1, r1), (p2, q2, r2)) = (p1 + p2, q1 + q2, r1 + r2 + 1
2
(p1q2 − p2q1)).

Thus
Lc = ∂r, Lx = ∂p − 1

2
q∂r, Ly = ∂q + 1

2
p∂r.

We have D1(H) = Cc, so D1(H)⊥ is spanned by p, q. Thus we have
deg(p) = deg(q) = d, deg(r) = d2. So for any d > 1, Lc, Lx, Ly lower
the degree. So setting Vn = Fn(SH∗) to be the (finite dimensional)
space of polynomials of degree ≤ n, we see that Lc, Lx, Ly map Vn to
Vn−1.
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Corollary 50.7. Every finite dimensional nilpotent Lie algebra n over
C has a faithful finite dimensional representation where all its elements
act by nilpotent operators. Thus n is isomorphic to a subalgebra of the
Lie algebra of strictly upper triangular matrices of some size.

Proof. By definition, O(N) is a faithful n-module. Hence so is Vn for
some n. �

50.4. Faithful representations of general finite dimensional Lie
algebras.

Theorem 50.8. (Ado’s theorem) Every finite dimensional Lie algebra
over C has a finite dimensional faithful representation.

Proof. Let g be a finite dimensional complex Lie algebra. By Proposi-
tion 50.3, g can be embedded into an algebraic Lie algebra, so we may
assume without loss of generality that g is algebraic. Thus g = Lie(G)
where G = K n N for reductive K and unipotent N . Also we may
assume that g 6= g′ ⊕ g′′ for g′, g′′ 6= 0, otherwise the problem reduces
to a smaller algebraic Lie algebra (indeed if V ′, V ′′ are faithful repre-
sentations of g′, g′′ then V ′⊕ V ′′ is a faithful representation of g′⊕ g′′).
Then k = Lie(K) acts faithfully on n = Lie(N). Now, g acts on O(N)
preserving the subspaces Vn (n = Lie(N) acts by left invariant vector
fields and k by the adjoint action).

As we have shown in the proof of Corollary 50.7, n acts faithfully on
Vn for some n. We claim that this Vn is, in fact, a faithful representation
of the whole g, which implies the theorem. Indeed, let a ⊂ g be the
ideal of elements acting by zero on Vn, and let a be the projection of a
to k (an ideal in k). Since n acts faithfully on Vn, we have a ∩ n = 0.
Given a ∈ a, we have a = a+ b where a ∈ a is the projection of a and
b ∈ n. For x ∈ n we have [a, x] ∈ a∩n = 0. Thus [a, x] = −[b, x]. Hence
the operator x 7→ [a, x] on n is nilpotent. So a acts on n by nilpotent
operators. Since K is reductive and a ⊂ k is an ideal, this means that
a acts on n by zero. Thus a = 0 and a ⊂ n. Hence a = 0. �
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