
48. Levi decomposition

48.1. Cohomology of Lie algebras with coefficients. The defini-
tion of cohomology of Lie algebras may be generalized to define the
cohomology with coefficients in a module, so that the cohomology con-
sidered above is the one for the trivial module.

Let g be a Lie algebra and V a g-module. The Chevalley-Eilenberg
(or standard) complex of g with coefficients in V is defined by

CE•(g, V ) := Hom(∧•g, V )

with differential defined by the full Cartan formula (without dropping
the first term):

dω(a0, ..., am) =
∑
i

(−1)iaiω(a0, ..., âi, ..., am)+∑
i<j

(−1)i+jω([ai, aj], a0, ..., âi, ..., âj, ..., am).

The cohomology of this complex is called the cohomology of g with
coefficients in V and denoted H•(g, V ). Note that the previously
defined cohomology H•(g) is H•(g,C).

If g is the Lie algebra of a Lie group G (or its complexification) and V
is finite dimensional, then we simply have CE•(g, V ) := (Ω•(G)⊗ V )G

(and the differential is just the de Rham differential). So in particular
by Theorem 45.5 we have (using that the smallest i > 0 such that
H i(g,C) 6= 0 is 3):

Proposition 48.1. (i) If G is compact and V is a nontrivial irreducible
representation then

H i(g, V ) = 0, i > 0.

In particular, this is so for any non-trivial irreducible finite dimensional
reporesentation V of a semisimple Lie algebra g.

(ii) (Whitehead’s theorem) For semisimple g and any finite dimen-
sional V we have H1(g, V ) = H2(g, V ) = 0.34

However, this cohomology is non-trivial in general if g is not semisim-
ple or V is infinite dimensional.

Let us explore the meaning of H i(g, V ) for small i.
1. We have H0(g, V ) = V g, the g-invariants in V .
2. H1(g, V ) is the quotient of the space Z1(g, V ) of 1-cocycles

ω : g→ V , i.e., linear maps satisfying

ω([x, y]) = xω(y)− yω(x)

34Note that H1(g, V ) appeared earlier in Section 18 and Whitehead’s theorem
in the case of H1 was proved in Subsection 18.2.
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by the space of 1-coboundaries B1(g, V ), of the form ω(x) = xv for
some v ∈ V .

Proposition 48.2. (i) If V,W are representations of g then Ext1(V,W ) =
H1(g,Homk(V,W )).

(ii) Consider the action of the additive group of V on the Lie algebra
gn V (with trivial commutator on V ) by

v ◦ (x,w) = (x,w + xv).

Then H1(g, V ) classifies Lie algebra homomorphisms g→ gnV of the
form x 7→ (x, ω(x)) modulo this action.

Proof. (i) Suppose the space W ⊕ V is equipped with the action of g
so that W is a submodule and V the quotient. Thus the action of g on
W ⊕ V is given by

ρ(x) =

(
ρW (x) ω(x)

0 ρV (x)

)
,

where ω : g → Homk(V,W ). So the identity ρ([x, y]) = [ρ(x), ρ(y)]
translates into

ω([x, y]) = ρW (x)ω(y)− ω(y)ρV (x)− ρW (y)ω(x) + ω(x)ρV (y).

i.e., ρ ∈ Z1(g,Homk(V,W )). Also it is easy to check that for two such
representations ρ1, ρ2 there is an isomorphism ρ1 → ρ2 acting trivially
on W and V/W if and only if the corresponding maps ω1, ω2 differ
by a coboundary: ω1 − ω2 ∈ B1(g,Homk(V,W )). This implies the
statement.

(ii) We leave this to the reader as an exercise. �

3. Z1(g, g) is the Lie algebra of derivations of g, and B1(g, g) is
the ideal of inner derivations. So H1(g, g) is the Lie algebra of outer
derivations, the quotient of all derivations by inner derivations. In
particular, we rederive the fact proved earlier that all derivations of a
semisimple complex Lie algebra g are inner (H1(g, g) = 0).

4. Suppose we want to define an abelian extension g̃ of g by V ,
i.e., a Lie algebra which can be included in the short exact sequence

0→ V → g̃→ g→ 0

where V is an abelian ideal. To classify such extensions, pick a vector
space splitting g̃ = g⊕ V , then the commutator looks like

[(x, v), (y, w)] = ([x, y], xw − yv + ω(x, y)),

where ω : ∧2g→ V is a linear map. The Jacobi identity is then equiva-
lent to ω being in the space Z2(g, V ) of 2-cocycles. Moreover, it is easy
to check that for two such extensions g̃1, g̃2 there is an isomorphism

261



φ : g̃1 → g̃2 which acts trivially on V and g if and only if the corre-
sponding cocycles ω1, ω2 differ by a coboundary: ω1 − ω2 ∈ B2(g, V ).
Thus, we get

Proposition 48.3. Abelian extensions of g by V modulo isomorphisms
which act trivially on V and g are classified by H2(g, V ). For example,
the space H2(g,C) classifies 1-dimensional central extensions of g:

0→ C→ g̃→ g→ 0.

Example 48.4. Let g = C2 be the 2-dimensional abelian Lie algebra.
Then we have seen that the Poincaré polynomial of the cohomology of
g is 1 + 2q + q2 (cohomology of the 2-torus). So H2(g,C) = C. The
only cocycle up to scaling is given by ω(x, y) = 1, where x, y is a basis
of g, and all coboundaries are zero. So we have a central extension of g
defined by this cocycle with basis x, y, c and [x, y] = c, [x, c] = [y, c] = 0.
This is the Heisenberg Lie algebra, which is isomorphic to the Lie
algebra of strictly upper-triangular 3 by 3 matrices.

5. Let us now study deformations of Lie algebras. Suppose g is a
Lie algebra over a field k and we want to deform the bracket, with
deformation parameter t. So the new bracket will be

[x, y]t = [x, y] + tc1(x, y) + t2c2(x, y) + ...,

where ci : ∧2g → g are linear maps. This bracket should satisfy the
Jacobi identity, i.e., define a new Lie algebra structure on g[[t]] (over
k[[t]]). Such deformations are distinguished up to linear isomorphisms

a = 1 + ta1 + t2a2 + ...

where ai ∈ Endk(g).
In particular, in first order, i.e., modulo t2, we get a new Lie algebra

structure on g[t]/t2g[t] = g ⊕ tg such that this Lie algebra can be
included in the short exact sequence

0→ tg→ g⊕ tg→ g→ 0

where tg ∼= g is an abelian ideal with adjoint action of g (note that
this Lie algebra structure is automatically k[t]/t2-linear). So this is an
abelian extension of g by tg, and we know that such extensions are
classified by H2(g, g). So we obtain

Proposition 48.5. First-order deformations of g as a Lie algebra are
classified by H2(g, g).

Thus if H2(g, g) = 0, every deformation is isomorphic to the trivial
one, with c1 = c2 = ... = 0. Indeed, applying automorphisms
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a = 1 + ta1 + t2a2 + ..., we can kill successively c1, then c2, then c3, and
so on. Thus from Whitehead’s theorem we obtain

Corollary 48.6. If g is semisimple then it is rigid, i.e., has no non-
trivial Lie algebra deformations.

Example 48.7. Let g be the 2-dimensional abelian Lie algebra over C.
Then H2(g, g) = C2, and we get a 2-parameter family of deformations
with bracket [x, y] = tx + sy. These, however, turn out to be all
equivalent (for (t, s) 6= (0, 0)) under the action of GL2(C): they are all
isomorphic to the Lie algebra with basis x, y and commutator [x, y] = y.

However, not all first order deformations of a Lie algebra lift to
second order, i.e., modulo t3. Namely, the Jacobi identity in the second
order tells us that dc2 = [c1, c1], where [c1, c1] is the Schouten bracket
of c1 with itself:

[c1, c1](x, y, z) = c1(c1(x, y), z) + c1(c1(y, z), x) + c1(c1(z, x), y).

This expression is automatically a cocycle (check it!), but we need it
to be a coboundary. So the cohomology class of [c1, c1] in H3(g, g) is
an obstruction to lifting the deformation modulo t3. Thus the space
H3(g, g) is the home for obstructions to deformations. For exam-
ple, if g is abelian then H2(g, g) = Homk(∧2g, g), and the obstruction
to extending c = tc1 modulo t3 is

Jacobi(c1) := [c1, c1] ∈ H3(g, g) = Homk(∧3g, g).

6. In a similar way we can study deformations V [[t]] of a module V
over g:

ρt(x) = ρ(x) + tρ1(x) + t2ρ2(x) + ...

Modulo t2 we get a g-module structure on V [t]/t2V [t] = V ⊕ tV such
that we have a short exact sequence

0→ tV → V ⊕ tV → V → 0.

Thus first order deformations of V are classified by Ext1
g(V, V ) =

H1(g,EndkV ). Again, lifting of this deformation modulo t3 is not au-
tomatic, and we get an obstruction in Ext2

g(V, V ) = H2(g,Endk(V )).

Exercise 48.8. (i) Let a, g be Lie algebras and φ : a → g a homo-
morphism. Show that first order deformations of φ are classified by
H1(a, g), where a ∈ a acts on g by adφ(a).

(ii) Show that if a is semisimple and g finite dimensional over C then
H1(a, g) = 0.

(iii) Show that if a, g are semisimple complex Lie algebras then there
are only finitely many homomorphisms a → g up to conjugation by
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Gad. (Hint: Consider the affine algebraic variety X ⊂ HomC(a, g) of
all homomorphisms and show that the tangent space TφX is Z1(a, g),
the space of 1-cocycles. Then use (ii) to deduce that X is the union of
finitely many orbits of Gad.)

(iv) How many conjugacy classes do we have in (iii) if a = sl2 and
g = sln, son, sp2n?

48.2. Levi decomposition.

Theorem 48.9. (Levi decomposition, Theorem 16.7) Over real or com-
plex numbers we have g ∼= rad(g) ⊕ gss, where gss ⊂ g is a semisim-
ple subalgebra (but not necessarily an ideal); i.e., g is isomorphic to
the semidirect product gss n rad(g). In other words, the projection
p : g → gss admits an (in general, non-unique) splitting q : gss → g,
i.e., a Lie algebra map such that p ◦ q = Id.

Proof. We can write g = gss ⊕ rad(g) as a vector space. Then the
commutator looks like

[(a, x), (b, y)] = ([x, b]−[y, a]+[a, b]+ω(x, y), [x, y]), x, y ∈ gss, a, b ∈ rad(g).

Let rad(g) = D0 ⊃ D1 ⊃ ... be the upper central series of rad(g), i.e.,
Di+1 = [Di, Di]. Suppose Dn 6= 0 but Dn+1 = 0 (so Dn is an abelian
ideal). Using induction in dimension of g and replacing g by g/Dn,
we may assume that ω(x, y) ∈ Dn. But then ω ∈ Z2(gss, D

n), which
equals B2(gss, D

n) by Whitehead’s theorem, i.e., ω = dη. Using η, we
can modify the splitting g = gss ⊕ rad(g) to make sure that ω = 0.
This implies the statement.35 �

35In other words, we have reduced to the case when rad(g) = V is abelian, and
we have shown above that abelian extensions are classified by H2(gss, V ), which is
zero by Whitehead’s theorem.
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