
46. Topology of Lie groups and homogeneous spaces, II

46.1. The coproduct on the cohomology ring. To understand
the algebra R := H•(G) = H•(G,C) better, note that the multipli-
cation map G × G → G induces the graded algebra homomorphism
∆ : H•(G)→ H•(G×G) = H•(G)⊗H•(G), which is coassociative:

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

(Note that the warning in Remark 45.11 about tensor product in the
graded sense still applies here!) Such a map ∆ is called a coproduct
since it defines an algebra structure on the dual space R∗ (see Sub-
section 12.3). We also have the augmentation map ε : R → C such
that

(ε⊗ 1)(∆(x)) = (1⊗ ε)(∆(x)) = x

for all x ∈ R. Such a structure is called a graded bialgebra.31

Exercise 46.1. (Hopf theorem) Let R be a finite dimensional graded-
commutatitive bialgebra over a field k of characteristic zero, and R[0] =
k (where the grading is by nonnegative integers). Show that R is a
free graded commutative algebra on some homogeneous generators of
odd degrees, i.e., R = ∧•k(ξ1, ..., ξr) with deg ξi = 2mi + 1 for some
nonnegative integers mi. Thus dimR = 2r.

Hint. Recall from Subsection 14.1 that an element x ∈ R is prim-
itive if ∆(x) = x ⊗ 1 + 1 ⊗ x. Show that any homogeneous primitive
x has odd degree (use that dimR < ∞), thus x2 = 0, and that R
is generated by homogeneous primitive elements. Then show that lin-
early independent primitive elements in R cannot satisfy any nontrivial
relation (take a relation of lowest degree, compute its coproduct and
find a relation of even lower degree, getting a contradiction).

For more hints see [C], Subsection 2.4.

Let us now determine the number r. We have 2r = dim(∧•g∗)g. But
this dimension can be computed using the Weyl character formula.
Namely, the character of ∧•g∗ is

χ∧•g∗(t) = 2rank(g)
∏
α>0

(1 + α(t))(1 + α(t)−1),

where T ⊂ G is a maximal torus and t ∈ T . So

dim(∧•g∗)g =
2rank(g)

|W |

∫
T

∏
α>0

(α(t2)− 1)(1− α(t−2))dt = 2rank(g).

31Moreover, we have an algebra homomorphism S : R → R induced by the
inversion map G → G called the antipode. This makes R into what is called a
graded Hopf algebra.
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So r = rank(g).
Thus we have

H•(G) = H•(g) = (∧•g∗)g = ∧•(ξ(1), ..., ξ(r)),

where r = rank(g). and deg(ξ(i)) = 2mi + 1. Moreover, it suffices to
consider the case when g is simple. What are the numbers mi in this
case?

Let us order mi as follows: m1 ≤ m2 ≤ ... ≤ mr. We know that
r + 2

∑
mi = dim g, so

∑
imi = |R+|. Also it is not hard to see that

m1 = 1, m2 > 1:

Exercise 46.2. Show that for a simple Lie algebra g we have (∧3g∗)g =
C, spanned by the triple product ([xy], z).

Hint. Let ω ∈ (∧3g∗)g.
1. Show that

ω(ei, [fi, hi], h) + ω(ei, hi, [fi, h]) = 0

for h ∈ h and deduce that

ω(ei, fi, h) = 1
2
αi(h)ω(ei, fi, hi).

2. Take y, z ∈ h and show that

ω(hi, y, z) + ω(fi, [ei, y], z) + ω(fi, y, [ei, z]) = 0.

Deduce that ω(x, y, z) = 0 for x, y, z ∈ h. Conclude that ω is com-
pletely determined by ω(eα, e−α, h) for all roots α and h ∈ h. Use the
Weyl group to reduce to ω(ei, fi, h) and then to ω(ei, fi, hi).

3. Finally, use that

ω([ei, ej], fi, fj) = ω(ej, fj, hi) = ω(ei, fi, hj)

to show that all possible ω are proportional.

In particular, we see that for a simple compact connected Lie group
G, one has H3(G,C) ∼= C. Thus, the sphere Sn admits a Lie group
structure if and only if n = 0, 1, 3.

Example 46.3. We get m2 = 2 for A2, m2 = 3 for B2 = C2, m2 = 5
for G2. Thus the Poincaré polynomials Pg(q) :=

∑
n≥0 dimHn(G,C)qn

for compact simple Lie groups of rank ≤ 2 are:

PA1(q) = 1 + q3, PA2(q) = (1 + q3)(1 + q5),

PB2(q) = (1 + q3)(1 + q7), PG2(q) = (1 + q3)(1 + q11).
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46.2. The cohomology ring of a simple compact connected Lie
group. In fact, we have the following classical theorem, which we will
not prove in general, but will prove below for type A and also in exer-
cises for classical groups and G2.

Theorem 46.4. Let G be a simple compact Lie group with complexified
Lie algebra g. Then the numbers mi are the exponents of g defined in
Subsection 32.3. In other words, the degrees 2mi + 1 of generators of
the cohomology ring are the dimensions of simple modules occurring
in the decomposition of g over its principal sl2-subalgebra. Thus the
cohomology ring H•(G,C) is the exterior algebra ∧•(ξ2m1+1, ..., ξ2mr+1),
where ξj has degree j.

A modern general proof of this theorem can be found in [R].

Remark 46.5. The Poincaré polynomial Pg(q) of (∧•g∗)g is given by
the formula

Pg(q) =
(1 + q)r

|W |

∫
T

∏
α∈R

(1 + qα(t))
∏
α>0

(α(t)
1
2 − α(t)−

1
2 )2.

So Theorem 46.4 is equivalent to the statement that this integral equals∏
i(1 + q2mi+1).

We will prove Theorem 46.4 in the case of type A.

Corollary 46.6. For g = sln we have mi = i. Equivalently, the same
is true for g = gln if we add m0 = 0.

Proof. Let g = gln, V = Cn. We need to compute the Poincaré poly-
nomial of ∧•(V ⊗ V ∗)g. The skew Howe duality (Proposition 30.11)
implies that this Poincaré polynomial is

P (q) =
∑
λ=λt

q|λ|,

where the summation is over λ with ≤ n parts. But there are exactly
2n such symmetric partitions λ: they consist of a sequence of hooks
(k, 1k−1) with decreasing values of k, with each of them either present
or not. The degree of such a hook is 2k − 1, which implies that

(46.1) Pgln(q) = (1 + q)(1 + q3)(1 + q5)...(1 + q2n−1).

�

Thus we get that the cohomology H•(U(n),C) = H•(GLn(C),C) is
∧•(ξ1, ξ3, ..., ξ2n−1) (where subscripts are degrees) with Poincaré poly-
nomial (46.1), and H•(SU(n),C) = H•(SLn(C),C) = ∧•(ξ3, ..., ξ2n−1)
with Poincaré polynomial (1 + q3)(1 + q5)...(1 + q2n−1).
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In the next exercise and the following subsections we will use the
notions of a cell complex and its cellular homology and coho-
mology with coefficients in any commutative ring, and the fact that if
a manifold is equipped with a cell decomposition (i.e., represented as a
disjoint union of cells) then its cellular cohomology with C-coefficients
(=dual to the cellular homology) is canonically isomorphic to the de
Rham cohomology via the integration pairing (the de Rham theo-
rem). More details can be found, for instance, in [H].

Exercise 46.7. (i) Give another proof of Theorem 46.4 for type An−1

as follows. Use that SU(n)/SU(n− 1) = S2n−1 to construct a cellular
decomposition of SU(n) into 2n−1 cells (use the decomposition of S2n−1

into a point and its complement). Then show that the differential in
the corresponding cochain complex with C-coefficients is zero (compare
its dimension to the dimension of the cohomology). Derive Theorem
46.4 for SU(n) by induction in n.

(ii) Use the same idea and the fact that U(n,H)/U(n−1,H) = S4n−1

to establish Theorem 46.4 in type Cn. Conclude that the cohomology
ring of U(n,H) (and Sp2n(C)) is ∧(ξ3, ξ7, ..., ξ4n−1) with Poincaré poly-
nomial is (1 + q3)(1 + q7)...(1 + q4n−1).

(iii) Show that these Poincaré polynomials are valid for cohomology
of the same Lie groups with any coefficients.32

46.3. Cohomology of homogeneous spaces. Let G be a connected
compact Lie group, g = Lie(G)C, K ⊂ G a closed subgroup, k =
Lie(K)C, and consider the homogeneous space G/K. How to compute
the cohomology H•(G/K,C)?

Since the group G acts on G/K, this cohomology is computed by
the complex Ω•(G/K)G = (∧•(g/k)∗)K . Let us denote this complex by
CE•(g, K). It is called the relative Chevalley-Eilenberg complex.

For example, if K = Γ is finite, this is just the Γ-invariant part of
the usual Chevalley-Eilenberg complex. But Γ acts trivially on the
cohomology, so we get H•(G/Γ) = H•(G) (as already noted above).

But what happens if dimK > 0? Can we describe the differential in
this complex algebraically as we did for K = 1?

This question is answered by the following proposition. Let k ⊂ g
be a pair of Lie algebras (not necessarily finite dimensional, over any
field). Denote by CEi(g, k) the spaces (∧•(g/k)∗)k.
Proposition 46.8. CE•(g, k) is a subcomplex of CE•(g).

32A similar idea can be used to find the cohomology of Spin(n) (see Exercise
46.13 below) but it is a bit more complicated since there is no cell decomposition
with zero boundary map, and thus any cell decomposition has strictly more than
2r cells for sufficiently large n (as there is 2-torsion in the integral cohomology).
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Exercise 46.9. Prove Proposition 46.8.

Definition 46.10. The complex CE•(g, k) is called the relative Chevalley-
Eilenberg complex, and its cohomology is called the relative Lie
algebra cohomology, denoted by H•(g, k).

Now note that, going back to the setting of compact Lie groups, we
have CE•(g, K) = CE•(g, k)K/K

◦
, so we obtain

Corollary 46.11. H•(G/K,C) ∼= H•(g, k)K/K
◦

as algebras.

Thus, the computation of the cohomology of G/K reduces to the
computation of the relative Lie algebra cohomology, which is again a
purely algebraic problem.

Corollary 46.12. Suppose z ∈ K is an element that acts by −1
on g/k. Then (∧i(g/k)∗)K = 0 for odd i. Hence the differential in
CE•(g, K) vanishes and thus H•(G/K,C) ∼= (∧•(g/k)∗)K, with coho-
mology present only in even degrees.

Exercise 46.13. The real Stiefel manifold Stn,k(R), k < n, is the
manifold of all orthonormal k-tuples of vectors in Rn. For example,
Stn,1(R) = Sn−1 and Stn,n−1(R) = SO(n).

(i) Show that Stn,k(R) = SO(n)/SO(n−k) and hence dim Stn,k(R) =

k(n− k) + k(k−1)
2

.
(ii) Show that for n ≥ 3, the manifold Stn,2(R) is a fiber bundle over

Sn−1 with fiber Sn−2. Conclude that Stn,2(R) has a cell decomposition
with four cells of dimensions 0, n − 2, n − 1, 2n − 3. Show that the
boundary of the n − 1-dimensional cell is zero if n is even and twice
the n−2-dimensional cell if n is odd. Compute the cohomology groups
of Stn,2(R) with any coefficient ring. In particular, show that if n
is odd then the cohomology groups with coefficients in any field of
characteristic 6= 2 are the same as for the sphere S2n−3.

(iii) Use the relative Chevalley-Eilenberg complex to compute the
cohomology H∗(Stn,2(R),C) in another way. Compare to (ii).

Exercise 46.14. (i) Prove Theorem 46.4 for type Bn using the method
of Exercise 46.7. Namely, use that SO(2n+1)/SO(2n−1) = St2n+1,2(R)
and Exercise 46.13(ii) or (iii). Conclude that the cohomology ring of
SO(2n+1) (and SO2n+1(C)) over C is ∧•(ξ3, ξ7, ..., ξ4n−1) with Poincaré
polynomial is (1 + q3)(1 + q7)...(1 + q4n−1).

(ii) Use the conclusion of (i) for Bn−1 and that SO(2n)/SO(2n−1) =
S2n−1 to prove Theorem 46.4 for type Dn (again using the method of
Exercise 46.7). Conclude that the cohomology ring of SO(2n) (and
SO2n(C)) over C is ∧•(ξ3, ξ7, ..., ξ4n−5, η2n−1) with Poincaré polynomial
having the form (1 + q3)(1 + q7)...(1 + q4n−5) · (1 + q2n−1).
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(iii) Show that these Poincaré polynomials are valid for cohomology
of the same Lie groups with coefficients in any ring containing 1

2
.
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