46. Topology of Lie groups and homogeneous spaces, II

46.1. The coproduct on the cohomology ring. To understand the algebra $R := H^{\bullet}(G) = H^{\bullet}(G, \mathbb{C})$ better, note that the multiplication map $G \times G \to G$ induces the graded algebra homomorphism $\Delta : H^{\bullet}(G) \to H^{\bullet}(G \times G) = H^{\bullet}(G) \otimes H^{\bullet}(G)$, which is coassociative:

$$(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta.$$

(Note that the warning in Remark 45.11 about tensor product in the graded sense still applies here!) Such a map Δ is called a **coproduct** since it defines an algebra structure on the dual space R^* (see Subsection 12.3). We also have the augmentation map $\varepsilon : R \to \mathbb{C}$ such that

$$(\varepsilon \otimes 1)(\Delta(x)) = (1 \otimes \varepsilon)(\Delta(x)) = x$$

for all $x \in R$. Such a structure is called a **graded bialgebra**.³¹

Exercise 46.1. (Hopf theorem) Let R be a finite dimensional gradedcommutative bialgebra over a field \mathbf{k} of characteristic zero, and $R[0] = \mathbf{k}$ (where the grading is by nonnegative integers). Show that R is a **free** graded commutative algebra on some homogeneous generators of odd degrees, i.e., $R = \wedge_{\mathbf{k}}^{\bullet}(\xi_1, ..., \xi_r)$ with deg $\xi_i = 2m_i + 1$ for some nonnegative integers m_i . Thus dim $R = 2^r$.

Hint. Recall from Subsection 14.1 that an element $x \in R$ is **primitive** if $\Delta(x) = x \otimes 1 + 1 \otimes x$. Show that any homogeneous primitive x has odd degree (use that dim $R < \infty$), thus $x^2 = 0$, and that R is generated by homogeneous primitive elements. Then show that linearly independent primitive elements in R cannot satisfy any nontrivial relation (take a relation of lowest degree, compute its coproduct and find a relation of even lower degree, getting a contradiction).

For more hints see [C], Subsection 2.4.

Let us now determine the number r. We have $2^r = \dim(\wedge^{\bullet}\mathfrak{g}^*)^{\mathfrak{g}}$. But this dimension can be computed using the Weyl character formula. Namely, the character of $\wedge^{\bullet}\mathfrak{g}^*$ is

$$\chi_{\wedge \bullet \mathfrak{g}^*}(t) = 2^{\operatorname{rank}(\mathfrak{g})} \prod_{\alpha > 0} (1 + \alpha(t))(1 + \alpha(t)^{-1}),$$

where $T \subset G$ is a maximal torus and $t \in T$. So

$$\dim(\wedge^{\bullet}\mathfrak{g}^{*})^{\mathfrak{g}} = \frac{2^{\operatorname{rank}(\mathfrak{g})}}{|W|} \int_{T} \prod_{\alpha>0} (\alpha(t^{2}) - 1)(1 - \alpha(t^{-2}))dt = 2^{\operatorname{rank}(\mathfrak{g})}.$$

³¹Moreover, we have an algebra homomorphism $S : R \to R$ induced by the inversion map $G \to G$ called the **antipode**. This makes R into what is called a **graded Hopf algebra**.

So $r = \operatorname{rank}(\mathfrak{g})$.

Thus we have

$$H^{\bullet}(G) = H^{\bullet}(\mathfrak{g}) = (\wedge^{\bullet}\mathfrak{g}^{*})^{\mathfrak{g}} = \wedge^{\bullet}(\xi^{(1)}, ..., \xi^{(r)}),$$

where $r = \operatorname{rank}(\mathfrak{g})$. and $\deg(\xi^{(i)}) = 2m_i + 1$. Moreover, it suffices to consider the case when \mathfrak{g} is simple. What are the numbers m_i in this case?

Let us order m_i as follows: $m_1 \leq m_2 \leq ... \leq m_r$. We know that $r + 2\sum m_i = \dim \mathfrak{g}$, so $\sum_i m_i = |R_+|$. Also it is not hard to see that $m_1 = 1, m_2 > 1$:

Exercise 46.2. Show that for a simple Lie algebra \mathfrak{g} we have $(\wedge^3 \mathfrak{g}^*)^{\mathfrak{g}} = \mathbb{C}$, spanned by the triple product ([xy], z).

Hint. Let $\omega \in (\wedge^3 \mathfrak{g}^*)^\mathfrak{g}$.

1. Show that

$$\omega(e_i, [f_i, h_i], h) + \omega(e_i, h_i, [f_i, h]) = 0$$

for $h \in \mathfrak{h}$ and deduce that

$$\omega(e_i, f_i, h) = \frac{1}{2}\alpha_i(h)\omega(e_i, f_i, h_i)$$

2. Take $y, z \in \mathfrak{h}$ and show that

$$\omega(h_i, y, z) + \omega(f_i, [e_i, y], z) + \omega(f_i, y, [e_i, z]) = 0.$$

Deduce that $\omega(x, y, z) = 0$ for $x, y, z \in \mathfrak{h}$. Conclude that ω is completely determined by $\omega(e_{\alpha}, e_{-\alpha}, h)$ for all roots α and $h \in \mathfrak{h}$. Use the Weyl group to reduce to $\omega(e_i, f_i, h)$ and then to $\omega(e_i, f_i, h_i)$.

3. Finally, use that

$$\omega([e_i, e_j], f_i, f_j) = \omega(e_j, f_j, h_i) = \omega(e_i, f_i, h_j)$$

to show that all possible ω are proportional.

In particular, we see that for a simple compact connected Lie group G, one has $H^3(G, \mathbb{C}) \cong \mathbb{C}$. Thus, the sphere S^n admits a Lie group structure if and only if n = 0, 1, 3.

Example 46.3. We get $m_2 = 2$ for A_2 , $m_2 = 3$ for $B_2 = C_2$, $m_2 = 5$ for G_2 . Thus the Poincaré polynomials $P_{\mathfrak{g}}(q) := \sum_{n\geq 0} \dim H^n(G,\mathbb{C})q^n$ for compact simple Lie groups of rank ≤ 2 are:

$$P_{A_1}(q) = 1 + q^3, \ P_{A_2}(q) = (1 + q^3)(1 + q^5),$$
$$P_{B_2}(q) = (1 + q^3)(1 + q^7), \ P_{G_2}(q) = (1 + q^3)(1 + q^{11}).$$

46.2. The cohomology ring of a simple compact connected Lie group. In fact, we have the following classical theorem, which we will not prove in general, but will prove below for type A and also in exercises for classical groups and G_2 .

Theorem 46.4. Let G be a simple compact Lie group with complexified Lie algebra \mathfrak{g} . Then the numbers m_i are the exponents of \mathfrak{g} defined in Subsection 32.3. In other words, the degrees $2m_i + 1$ of generators of the cohomology ring are the dimensions of simple modules occurring in the decomposition of \mathfrak{g} over its principal \mathfrak{sl}_2 -subalgebra. Thus the cohomology ring $H^{\bullet}(G, \mathbb{C})$ is the exterior algebra $\wedge^{\bullet}(\xi_{2m_1+1}, ..., \xi_{2m_r+1})$, where ξ_i has degree j.

A modern general proof of this theorem can be found in [R].

Remark 46.5. The Poincaré polynomial $P_{\mathfrak{g}}(q)$ of $(\wedge^{\bullet}\mathfrak{g}^{*})^{\mathfrak{g}}$ is given by the formula

$$P_{\mathfrak{g}}(q) = \frac{(1+q)^r}{|W|} \int_T \prod_{\alpha \in R} (1+q\alpha(t)) \prod_{\alpha > 0} (\alpha(t)^{\frac{1}{2}} - \alpha(t)^{-\frac{1}{2}})^2.$$

So Theorem 46.4 is equivalent to the statement that this integral equals $\prod_i (1 + q^{2m_i+1})$.

We will prove Theorem 46.4 in the case of type A.

Corollary 46.6. For $\mathfrak{g} = \mathfrak{sl}_n$ we have $m_i = i$. Equivalently, the same is true for $\mathfrak{g} = \mathfrak{gl}_n$ if we add $m_0 = 0$.

Proof. Let $\mathfrak{g} = \mathfrak{gl}_n$, $V = \mathbb{C}^n$. We need to compute the Poincaré polynomial of $\wedge^{\bullet}(V \otimes V^*)^{\mathfrak{g}}$. The skew Howe duality (Proposition 30.11) implies that this Poincaré polynomial is

$$P(q) = \sum_{\lambda = \lambda^t} q^{|\lambda|},$$

where the summation is over λ with $\leq n$ parts. But there are exactly 2^n such symmetric partitions λ : they consist of a sequence of hooks $(k, 1^{k-1})$ with decreasing values of k, with each of them either present or not. The degree of such a hook is 2k - 1, which implies that

(46.1)
$$P_{\mathfrak{gl}_n}(q) = (1+q)(1+q^3)(1+q^5)\dots(1+q^{2n-1}).$$

Thus we get that the cohomology $H^{\bullet}(U(n), \mathbb{C}) = H^{\bullet}(GL_n(\mathbb{C}), \mathbb{C})$ is $\wedge^{\bullet}(\xi_1, \xi_3, ..., \xi_{2n-1})$ (where subscripts are degrees) with Poincaré polynomial (46.1), and $H^{\bullet}(SU(n), \mathbb{C}) = H^{\bullet}(SL_n(\mathbb{C}), \mathbb{C}) = \wedge^{\bullet}(\xi_3, ..., \xi_{2n-1})$ with Poincaré polynomial $(1 + q^3)(1 + q^5)...(1 + q^{2n-1}).$ In the next exercise and the following subsections we will use the notions of a **cell complex** and its **cellular homology and coho-mology** with coefficients in any commutative ring, and the fact that if a manifold is equipped with a cell decomposition (i.e., represented as a disjoint union of cells) then its cellular cohomology with \mathbb{C} -coefficients (=dual to the cellular homology) is canonically isomorphic to the de Rham cohomology via the integration pairing (the **de Rham theo-rem**). More details can be found, for instance, in [H].

Exercise 46.7. (i) Give another proof of Theorem 46.4 for type A_{n-1} as follows. Use that $SU(n)/SU(n-1) = S^{2n-1}$ to construct a cellular decomposition of SU(n) into 2^{n-1} cells (use the decomposition of S^{2n-1} into a point and its complement). Then show that the differential in the corresponding cochain complex with \mathbb{C} -coefficients is zero (compare its dimension to the dimension of the cohomology). Derive Theorem 46.4 for SU(n) by induction in n.

(ii) Use the same idea and the fact that $U(n, \mathbb{H})/U(n-1, \mathbb{H}) = S^{4n-1}$ to establish Theorem 46.4 in type C_n . Conclude that the cohomology ring of $U(n, \mathbb{H})$ (and $\operatorname{Sp}_{2n}(\mathbb{C})$) is $\wedge(\xi_3, \xi_7, \dots, \xi_{4n-1})$ with Poincaré polynomial is $(1+q^3)(1+q^7)\dots(1+q^{4n-1})$.

(iii) Show that these Poincaré polynomials are valid for cohomology of the same Lie groups with any coefficients.³²

46.3. Cohomology of homogeneous spaces. Let G be a connected compact Lie group, $\mathfrak{g} = \operatorname{Lie}(G)_{\mathbb{C}}$, $K \subset G$ a closed subgroup, $\mathfrak{k} = \operatorname{Lie}(K)_{\mathbb{C}}$, and consider the homogeneous space G/K. How to compute the cohomology $H^{\bullet}(G/K, \mathbb{C})$?

Since the group G acts on G/K, this cohomology is computed by the complex $\Omega^{\bullet}(G/K)^G = (\wedge^{\bullet}(\mathfrak{g}/\mathfrak{k})^*)^K$. Let us denote this complex by $CE^{\bullet}(\mathfrak{g}, K)$. It is called the **relative Chevalley-Eilenberg complex**.

For example, if $K = \Gamma$ is finite, this is just the Γ -invariant part of the usual Chevalley-Eilenberg complex. But Γ acts trivially on the cohomology, so we get $H^{\bullet}(G/\Gamma) = H^{\bullet}(G)$ (as already noted above).

But what happens if dim K > 0? Can we describe the differential in this complex algebraically as we did for K = 1?

This question is answered by the following proposition. Let $\mathfrak{k} \subset \mathfrak{g}$ be a pair of Lie algebras (not necessarily finite dimensional, over any field). Denote by $CE^i(\mathfrak{g}, \mathfrak{k})$ the spaces $(\wedge^{\bullet}(\mathfrak{g}/\mathfrak{k})^*)^{\mathfrak{k}}$.

Proposition 46.8. $CE^{\bullet}(\mathfrak{g}, \mathfrak{k})$ is a subcomplex of $CE^{\bullet}(\mathfrak{g})$.

 $^{^{32}}$ A similar idea can be used to find the cohomology of Spin(n) (see Exercise 46.13 below) but it is a bit more complicated since there is no cell decomposition with zero boundary map, and thus any cell decomposition has strictly more than 2^r cells for sufficiently large n (as there is 2-torsion in the integral cohomology).

Exercise 46.9. Prove Proposition 46.8.

Definition 46.10. The complex $CE^{\bullet}(\mathfrak{g}, \mathfrak{k})$ is called the **relative Chevalley-Eilenberg complex**, and its cohomology is called the **relative Lie** algebra cohomology, denoted by $H^{\bullet}(\mathfrak{g}, \mathfrak{k})$.

Now note that, going back to the setting of compact Lie groups, we have $CE^{\bullet}(\mathfrak{g}, K) = CE^{\bullet}(\mathfrak{g}, \mathfrak{k})^{K/K^{\circ}}$, so we obtain

Corollary 46.11. $H^{\bullet}(G/K, \mathbb{C}) \cong H^{\bullet}(\mathfrak{g}, \mathfrak{k})^{K/K^{\circ}}$ as algebras.

Thus, the computation of the cohomology of G/K reduces to the computation of the relative Lie algebra cohomology, which is again a purely algebraic problem.

Corollary 46.12. Suppose $z \in K$ is an element that acts by -1on $\mathfrak{g}/\mathfrak{k}$. Then $(\wedge^i(\mathfrak{g}/\mathfrak{k})^*)^K = 0$ for odd i. Hence the differential in $CE^{\bullet}(\mathfrak{g}, K)$ vanishes and thus $H^{\bullet}(G/K, \mathbb{C}) \cong (\wedge^{\bullet}(\mathfrak{g}/\mathfrak{k})^*)^K$, with cohomology present only in even degrees.

Exercise 46.13. The real **Stiefel manifold** $\operatorname{St}_{n,k}(\mathbb{R})$, k < n, is the manifold of all orthonormal k-tuples of vectors in \mathbb{R}^n . For example, $\operatorname{St}_{n,1}(\mathbb{R}) = S^{n-1}$ and $\operatorname{St}_{n,n-1}(\mathbb{R}) = SO(n)$.

(i) Show that $\operatorname{St}_{n,k}(\mathbb{R}) = SO(n)/SO(n-k)$ and hence $\operatorname{dim} \operatorname{St}_{n,k}(\mathbb{R}) = k(n-k) + \frac{k(k-1)}{2}$.

(ii) Show that for $n \geq 3$, the manifold $\operatorname{St}_{n,2}(\mathbb{R})$ is a fiber bundle over S^{n-1} with fiber S^{n-2} . Conclude that $\operatorname{St}_{n,2}(\mathbb{R})$ has a cell decomposition with four cells of dimensions 0, n-2, n-1, 2n-3. Show that the boundary of the n-1-dimensional cell is zero if n is even and twice the n-2-dimensional cell if n is odd. Compute the cohomology groups of $\operatorname{St}_{n,2}(\mathbb{R})$ with any coefficient ring. In particular, show that if n is odd then the cohomology groups with coefficients in any field of characteristic $\neq 2$ are the same as for the sphere S^{2n-3} .

(iii) Use the relative Chevalley-Eilenberg complex to compute the cohomology $H^*(\text{St}_{n,2}(\mathbb{R}), \mathbb{C})$ in another way. Compare to (ii).

Exercise 46.14. (i) Prove Theorem 46.4 for type B_n using the method of Exercise 46.7. Namely, use that $SO(2n+1)/SO(2n-1) = \operatorname{St}_{2n+1,2}(\mathbb{R})$ and Exercise 46.13(ii) or (iii). Conclude that the cohomology ring of SO(2n+1) (and $SO_{2n+1}(\mathbb{C})$) over \mathbb{C} is $\wedge^{\bullet}(\xi_3, \xi_7, ..., \xi_{4n-1})$ with Poincaré polynomial is $(1+q^3)(1+q^7)...(1+q^{4n-1})$.

(ii) Use the conclusion of (i) for B_{n-1} and that $SO(2n)/SO(2n-1) = S^{2n-1}$ to prove Theorem 46.4 for type D_n (again using the method of Exercise 46.7). Conclude that the cohomology ring of SO(2n) (and $SO_{2n}(\mathbb{C})$) over \mathbb{C} is $\wedge^{\bullet}(\xi_3, \xi_7, ..., \xi_{4n-5}, \eta_{2n-1})$ with Poincaré polynomial having the form $(1+q^3)(1+q^7)...(1+q^{4n-5}) \cdot (1+q^{2n-1})$.

(iii) Show that these Poincaré polynomials are valid for cohomology of the same Lie groups with coefficients in any ring containing $\frac{1}{2}$.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.