
45. Topology of Lie groups and homogeneous spaces, I

45.1. The Chevalley-Eilenberg complex of a compact connected
Lie group. We would now like to study topology of connected Lie
groups. The Cartan decomposition implies that any real semisimple
Lie group Gθ is diffeomorphic to the product of its maximal compact
subgroup Kc and a Euclidean space. This combined with weak Levi
decomposition (Theorem 16.6) implies that topology of connected Lie
groups essentially reduces to topology of compact ones, as any simply-
connected solvable Lie group has a filtration by normal subgroups with
successive quotients being the 1-dimensional group R, hence is diffeo-
morphic to Rn (cf. Theorem 49.1, Corollary 49.6 below).

So let us study cohomology of compact connected Lie groups.
We first recall some generalities on cohomology of manifolds. As we

mentioned before, the cohomology of an n-dimensional manifold M can
be computed by the de Rham complex

0→ Ω0(M)→ Ω1(M)→ ...→ Ωn(M)→ 0,

where Ωi(M) is the space of smooth (complex-valued) differential i-
forms on M . The maps in this complex are given by the differential
d : Ωi(M) → Ωi+1(M), which satisfies the equation d2 = 0. Namely,
we define the i-th de Rham cohomology of M as the quotient

H i(M,C) := Ωi
closed(M)/Ωi

exact(M)

where Ωi
closed(M) ⊂ Ωi(M) is the space of closed forms (such that

dω = 0) and Ωi
exact(M) ⊂ Ωi(M) is the space of exact forms (such

that ω = dη for some η ∈ Ωi−1(M)).
If M is compact then the spaces H i(M,C) are known to be finite

dimensional, so we can define the Betti numbers of M , bi(M) :=
dimH i(M,C). Note that b0(M) is the number of connected compo-
nents of M , so if M is connected then b0(M) = 1.

The wedge product of differential forms descends to the cohomol-
ogy, which makes H•(M,C) := ⊕ni=0H

i(M,C) into a graded alge-
bra. This algebra is associative and graded-commutative: ab =
(−1)deg(a) deg(b)ba (since the wedge product of differential forms has
these properties). Moreover, if f : M → N is a differentiable map
of manifolds then we have the pullback map f ∗ : Ωi(N) → Ωi(M)
which commutes with d and hence descends to the cohomology. Also
f ∗ preserves the wedge product, hence defines a graded algebra homo-
morphism f ∗ : H•(N,C)→ H•(M,C).
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Exercise 45.1. Let f : [0, 1] ×M → N be a differentiable map and
ft : M → N be given by ft(x) = f(t, x). Then f ∗0 = f ∗1 on H•(N,C).
In other words, f ∗ is invariant under (smooth) homotopies of f .

Recall that for a vector field v on M , the Lie derivative

Lv : Ω•(M)→ Ω•(M)

is the unique derivation of the algebra of differential forms which com-
mutes with the de Rham differential and equals the usual derivative of
a function along v on Ω0(M).

Lemma 45.2. (Cartan’s magic formula) Let v be a vector field on M ,
Lv : Ωi(M) → Ωi(M) the Lie derivative and ιv : Ωi(M) → Ωi−1(M)
the contraction operator. Then

Lv = ιvd+ dιv.

Proof. It suffices to check this identity on local charts. It is easy to see
that both sides are derivations, so it suffices to check the equation on
functions (0-forms) and on 1-forms of the form df where f is a function.
For functions we have Lvf = ιvdf , which is essentially the definition of
Lv, while for ω = df we have

Lv(df) = d(Lvf) = dιv(df) = (ιvd+ dιv)(df),

since d2 = 0. �

Corollary 45.3. Lv maps closed forms to exact forms, hence acts triv-
ially in cohomology.

Corollary 45.4. If a connected Lie group G acts on a manifold M
then G acts trivially on H•(M,C).

Suppose now that a compact connected Lie group G acts on a man-
ifold M . Then we have the averaging operator P : Ω•(M) → Ω•(M)
over G which commutes with d and satisfies the equation P 2 = P , so
we have a decomposition of complexes

Ω•(M) = Ω•(M)G ⊕ Ω•(M)0

where the first summand is the image of P and the second one is the
kernel of P .

Theorem 45.5. The complex Ω•(M)0 is exact. Thus the cohomology
H•(M,C) is computed by the complex of invariant differential forms
Ω•(M)G.
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Proof. If ω ∈ Ωi(M)0 is closed then by Corollary 45.4 the cohomology
class [ω] of ω coincides with the cohomology class of [gω] for all g ∈ G.
Thus

[ω] =

∫
G

[gω]dg =
[ ∫

G

gωdg
]

= 0.

It follows that ω = dη for some η ∈ Ωi(M). Then ω = (1 − P )ω =
d(1 − P )η, and (1 − P )η ∈ Ωi(M)0. So the complex Ω•(M)0 is exact,
which implies the statement. �

Corollary 45.6. If G is a compact Lie group then H•(G,C) is com-
puted by the complex Ω•(G)G of left-invariant differential forms on G.

The complex Ω•(G)G is called the Chevalley-Eilenberg complex
of G.

45.2. Cohomology of Lie algebras. It turns out that the Chevalley-
Eilenberg complex of G can be described purely algebraically in terms
of the Lie algebra g = Lie(G)C. To this end, we will need another
lemma from basic differential geometry.

Lemma 45.7. (Cartan differentiation formula) Let ω ∈ Ωm(M) and
v0, ..., vm be vector fields on M . Then

dω(v0, ..., vm) =
∑
i

(−1)iLvi(ω(v0, ..., v̂i, ..., vm))+

∑
i<j

(−1)i+jω([vi, vj], v0, ..., v̂i, ..., v̂j, ..., vm)

(where the hats indicate the omitted terms).

Proof. It is easy to show that the right hand side is linear over functions
on M with respect to each vi (the first derivatives of the function
cancel out). Therefore, it suffices to assume that vi = ∂

∂xki
(in local

coordinates), and ω = fdxj1 ∧ ... ∧ dxjm . Then the second summand
on the RHS vanishes and the verification is straightforward. �

Corollary 45.8. Let G be a Lie group and ω ∈ Ωm(G)G be a left-
invariant differential form. Then for any left-invariant vector fields
v0, ..., vm we have

(45.1) dω(v0, ..., vm) =
∑
i<j

(−1)i+jω([vi, vj], v0, ..., v̂i, ..., v̂j, ..., vm).

Proof. This follows since the functions ω(v0, ..., v̂i, ..., vm) are constant.
�

Now observe that Ωm(G)G = ∧mg∗. Thus we get
247



Corollary 45.9. For any Lie group G the complex Ω•(G)G coincides
with the complex

0→ C→ g∗ → (∧2g)∗ → ...(∧mg)∗ → ...

with differential defined by (45.1), where g = Lie(G)C.

This purely algebraic complex can be defined for any Lie algebra g
over any field (the equality d2 = 0 follows from the Jacobi identity).29 It
is called the standard complex or the Chevalley-Eilenberg com-
plex of g, denoted CE•(g), and its cohomology is called the Lie alge-
bra cohomology of g, denoted H•(g).30

Also note that the complex CE•(g) has wedge product multipli-
cation, which descends to the cohomology. Thus H•(g) is a graded-
commutative associative algebra. Furthermore, if g = Lie(G)C for a
compact connected Lie group G then H•(g) ∼= H•(G,C) as a graded
algebra. However, this may fail even at the level of vector spaces (i.e.,
Betti numbers) if G is not compact.

Example 45.10. Let g be abelian, dim g <∞. Then CE•(g) = ∧•g∗,
with zero differential, so H•(g) = ∧•g∗. So if G = (S1)n is a torus then
we get H•(G,C) = ∧•g∗ = ∧•(ξ1, ..., ξn) where ξi have degree 1. In
particular, H•(S1) = ∧•(ξ). However, for the universal cover R of S1

this is clearly false.

Remark 45.11. Corollary 45.9 implies that for compact Lie groups
K1, K2 the map Ω•(K1)⊗Ω•(K2)→ Ω•(K1×K2) (i.e., in components,
Ωi(K1) ⊗ Ωj(K2) → Ωi+j(K1 × K2)) defines an isomorphism of coho-
mology rings H•(K1,C) ⊗ H•(K2,C) → H•(K1 × K2,C). This is a
special case of the Künneth theorem, which actually holds for any
manifolds (and more generally for sufficiently nice topological spaces),
which need not have any group structure. We warn the reader, how-
ever, that the tensor product of algebras here is in the graded
sense, i.e.

(a⊗ b)(a′ ⊗ b′) = (−1)deg(b) deg(a′)(aa′ ⊗ bb′).

Theorem 45.12. If G is a connected compact Lie group with Lie(G)C =
g then H•(G,C) ∼= (∧•g∗)g as a ring.

Proof. We have an action of G × G on G, so the cohomology of G is
computed by the complex of invariants Ω•(G)G×G = (∧•g∗)G. So our
job is to show that the differential in this complex is actually zero.

29Note that if g is finite dimensional then ∧ig∗ = (∧ig)∗.
30Note that H1(g) already appeared earlier in Section 18.

248



But this follows immediately from the definition of the differential in
∧•g∗. �

We also have

Proposition 45.13. If G is a connected Lie group, Γ ⊂ G a finite
subgroup, and π : G → G/Γ is the canonical map then π∗ defines an
isomorphism H•(G/Γ,C)→ H•(G,C).

Proof. The map π∗ is an isomorphism H•(G/Γ,C) → H•(G,C)Γ, but
Γ, being a subgroup of G, acts trivially on H•(G,C). �

Thus it suffices to determine the cohomology of simple, simply con-
nected compact Lie groups.
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