44. Maximal tori in compact groups, Cartan decomposition

44.1. Maximal tori in connected compact Lie groups. Let \mathfrak{g} be a complex semisimple Lie algebra, \mathfrak{g}^c its compact form, G a connected Lie group with Lie algebra \mathfrak{g} , $G^c \subset G$ its compact part (the connected Lie subgroup with Lie algebra \mathfrak{g}^c), as above.

A Cartan subalgebra $\mathfrak{h}^c \subset \mathfrak{g}^c$ is a maximal commutative Lie subalgebra (note that it automatically consists of semisimple elements since all elements of \mathfrak{g}^c are semisimple). In other words, it is a subspace such that $\mathfrak{h}^c \otimes_{\mathbb{R}} \mathbb{C}$ is a Cartan subalgebra of \mathfrak{g} .

Recall that all Cartan subalgebras of \mathfrak{g} are conjugate, even if equipped with a system of simple roots (Theorem 20.10). Namely, given two such subalgebras (\mathfrak{h}, Π) and (\mathfrak{h}', Π') , there is $g \in G$ such that $\mathrm{Ad}_g(\mathfrak{h}, \Pi) = (\mathfrak{h}', \Pi')$. It turns out that the same result holds for \mathfrak{g}^c .

Lemma 44.1. Any two Cartan subalgebras in \mathfrak{g}^c equipped with systems of simple roots are conjugate under G^c .

Proof. Given (\mathfrak{h}^c, Π) and $(\mathfrak{h}^{c'}, \Pi')$, there is $g \in G$ such that $\operatorname{Ad}_g(\mathfrak{h}^c, \Pi) = (\mathfrak{h}^{c'}, \Pi')$. Then we also have $\operatorname{Ad}_{\overline{g}}(\mathfrak{h}^c, \Pi) = (\mathfrak{h}^{c'}, \Pi')$, where $\overline{g} := \omega(g)$. So $\overline{g}^{-1}g$ commutes with \mathfrak{h}^c and preserves Π , i.e., $\overline{g}h = g$, $h \in H := \exp(\mathfrak{h}^c_{\mathbb{C}})$. Writing g = kp, where $k \in G^c$, $p \in \mathbf{P}$, we have $kp^{-1}h = kp$, so $h = p^2$. Since p is positive, $p = h^{1/2}$, so it commutes with \mathfrak{h}^c and preserves Π , thus $\operatorname{Ad}_k(\mathfrak{h}^c, \Pi) = (\mathfrak{h}^{c'}, \Pi')$, as claimed.

Note that for every Cartan subalgebra $\mathfrak{h}^c \subset \mathfrak{g}^c$, $H^c = \exp(\mathfrak{h}^c) \subset G^c$ is a torus, which is clearly a **maximal torus** (as the complexified Lie algebra of a larger torus would be a larger commutative subalgebra than \mathfrak{h}^c). Conversely, if $H^c \subset G^c$ is a maximal torus then $\text{Lie}(H^c)$ can be included in a Cartan subalgebra, hence it is itself a Cartan subalgebra. So we have a bijection between Cartan subalgebras in \mathfrak{g}^c and maximal tori in G^c . Similarly, there is a bijection between Cartan subalgebras in \mathfrak{g} and maximal tori in G.

This implies

Corollary 44.2. Any two maximal tori in G or G^c equipped with systems of simple roots are conjugate.

We also have

Theorem 44.3. Every element of a connected compact Lie group K is contained in a maximal torus, and all maximal tori in K are conjugate (even when equipped with systems of simple roots).

Proof. We may assume without loss of generality that K is semisimple, i.e., $K = G^c$ for a connected semisimple complex Lie group G, which

implies the second statement. To prove the first statement, let $K' \subset K$ be the set of elements contained in a maximal torus. Fix a maximal torus $T \subset K$ and consider the map $f: K \times T \to K$ given by $f(k,t) = ktk^{-1}$, whose image is K'. This implies that K' is compact, hence closed, so $K \setminus K'$ is open.

On the other hand, recall from Subsection 20.1 that a generic $x \in \mathfrak{g}^c$ is **regular**, meaning that its centralizer \mathfrak{z}_x has dimension $\leq \operatorname{rank}(\mathfrak{g})$, in which case it must have dimension exactly $\operatorname{rank}(\mathfrak{g})$ and be a Cartan subalgebra. It is clear that every regular element x is contained in a unique maximal torus, namely $\exp(\mathfrak{z}_x)$, so the elements of $K \setminus K'$ are all non-regular. But the set of non-regular elements is defined by polynomial equations in Ad_x (the minors of Ad_x of codimension $\operatorname{rank}(\mathfrak{g})$ all vanish), so $K \setminus K'$ must be empty (as it is an open set contained in the set of solutions of nontrivial polynomial equations in Ad_x).

This immediately implies

Corollary 44.4. The exponential map $\exp: \mathfrak{g}^c \to G^c$ is surjective.²⁶

Exercise 44.5. Is the exponential map surjective for the group $SL_2(\mathbb{C})$?

44.2. Semisimple and unipotent elements. Let G be a connected reductive complex Lie group. An element $g \in G$ is called **semisimple** if it acts in every finite dimensional representation of G by a semisimple (=diagonalizable) operator, and **unipotent** if it acts in every finite dimensional representation of G by a unipotent operator (all eigenvalues are 1).

Exercise 44.6. Let Y be a faithful finite dimensional representation of G (it exists by Corollary 36.5). Show that $g \in G$ is semisimple if and only if it acts semisimply on Y, and unipotent if and only if it acts unipotently on Y.

Hint: Use Proposition 36.12.

Exercise 44.7. Show that if G is semisimple then the exponential map defines a homeomorphism between the set of nilpotent elements in $\mathfrak{g} = \text{Lie}G$ and the set of unipotent elements in G.

Exercise 44.8. Let Z be the center of a connected complex reductive group G.

²⁶Here is another proof of this corollary. Let K(x,y) be the Killing form of \mathfrak{g}^c . Since K is negative definite, the form -K extends to a bi-invariant Riemannian metric on G_c . Since G^c is compact, the Hopf-Rinow theorem guarantees that for any $g \in G^c$ there is a geodesic on G^c in this metric connecting 1 and g. But it is easy to see that this geodesic is a segment of a one-parameter subgroup of G^c , which implies the statement.

- (i) Show that the homomorphism $\pi: G \to G/Z$ defines a bijection between unipotent elements of G and G/Z.
- (ii) Show that the set of semisimple elements of G is the preimage under π of the set of semisimple elements of G/Z.

Proposition 44.9. (Jordan decomposition in G). Every element $g \in G$ has a unique factorization $g = g_s g_u$, where $g_s \in G$ is semisimple, $g_u \in G$ is unipotent and $g_s g_u = g_u g_s$.

Exercise 44.10. Prove Proposition 44.9.

- **Hint.** Use Exercise 44.8 to reduce to the case when $G = G_{ad}$ is a semisimple adjoint group. In this case, write Ad_g as su, where s is a semisimple and u a unipotent operator with su = us (Jordan decomposition for matrices). Show that $s = Ad_{g_s}$ and $u = Ad_{g_u}$ for some commuting $g_s, g_u \in G_{ad}$. Then establish uniqueness using the uniqueness of Jordan decomposition of matrices.
- 44.3. Maximal abelian subspaces of \mathfrak{p}_{θ} . Let G be a connected complex semisimple group, $G_{\theta} \subset G$ a real form, $\mathfrak{g}_{\theta} \subset \mathfrak{g}$ their Lie algebras. We have the polar decomposition $G_{\theta} = K^c P_{\theta}$ and the additive version $\mathfrak{g}_{\theta} = \mathfrak{k}^c \oplus \mathfrak{p}_{\theta}$, with $\mathfrak{p}_{\theta} = i\mathfrak{p}^c$. Also $\mathfrak{g}^c = \mathfrak{k}^c \oplus \mathfrak{p}^c$.
- **Proposition 44.11.** (i) Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p}_{θ} . Then the centralizer \mathfrak{z} of \mathfrak{a} in \mathfrak{g}^c has the form $\mathfrak{m} \oplus \mathfrak{a}$, where \mathfrak{m} is a reductive Lie algebra contained in \mathfrak{k}^c . Moreover, if \mathfrak{t} is a Cartan subalgebra of \mathfrak{m} then $\mathfrak{t} \oplus i\mathfrak{a}$ is a Cartan subalgebra of \mathfrak{g}^c and $\mathfrak{t} \oplus \mathfrak{a}$ is a Cartan subalgebra of \mathfrak{g}_{θ} .
- (ii) If $a \in \mathfrak{a}$ is sufficiently generic then the centralizer of a in \mathfrak{p}_{θ} is \mathfrak{a} .
 - (iii) For any $p \in \mathfrak{p}_{\theta}$ there exists $k \in K^c$ such that $\mathrm{Ad}_k(p) \in \mathfrak{a}$.
 - (iv) All maximal abelian subspaces of \mathfrak{p}_{θ} are conjugate by K^c .
- Proof. (i) Let $x \in \mathfrak{g}^c$, $[x,\mathfrak{a}] = 0$. Write $x = x_+ + x_-$, $x_+ \in \mathfrak{k}^c$, $x_- \in \mathfrak{p}^c$. Then $[x_\pm,\mathfrak{a}] = 0$, thus $x_- \in \mathfrak{a}$ by maximality of \mathfrak{a} . So $x \in \mathfrak{k}^c \oplus \mathfrak{a}$. Thus $\mathfrak{z} = \mathfrak{m} \oplus \mathfrak{a}$ where $\mathfrak{m} \subset \mathfrak{k}^c$ is a reductive Lie algebra. Moreover, if $\mathfrak{t} \subset \mathfrak{m}$ is a Cartan subalgebra then $\mathfrak{t} \oplus i\mathfrak{a}$ is a maximal abelian subalgebra of \mathfrak{g}^c , hence is a Cartan subalgebra. Similarly, $\mathfrak{t} \oplus \mathfrak{a}$ is a Cartan subalgebra of \mathfrak{g}_θ .
- (ii) Consider the group $T_{\mathfrak{a}} := \exp(i\mathfrak{a}) \subset G^c$. It is clear from (i) that this is a compact torus. Thus for a generic enough $a \in \mathfrak{a}$, the 1-parameter subgroup e^{ita} is dense in $T_{\mathfrak{a}}$. So if $p \in \mathfrak{p}_{\theta}$ and [p,a] = 0 then e^{ita} commutes with p, hence so do $T_{\mathfrak{a}}$ and \mathfrak{a} . So by maximality of \mathfrak{a} we have $p \in \mathfrak{a}$.
- (iii) Let $a \in \mathfrak{a}$ be generic enough as in (ii). Then by (ii), $\mathrm{Ad}_k(p) \in \mathfrak{a}$ if and only if $[\mathrm{Ad}_k(p), a] = 0$.

Consider the function $f: K^c \to \mathbb{R}$ given by $f(b) := (\mathrm{Ad}_b(p), a)$. This function is continuous, so attains a maximum on the compact group K^c . Suppose k is a maximum point of f. Let $p_0 := \mathrm{Ad}_k(p)$. Differentiating f at k, we get $([x, p_0], a) = 0$ for all $x \in \mathfrak{k}^c$. Thus $(x, [p_0, a]) = 0$ for all $x \in \mathfrak{k}^c$. But $[p_0, a] \in \mathfrak{k}^c$ and the inner product on \mathfrak{k}^c is nondegenerate. Thus $[p_0, a] = 0$, as desired.

- (iv) Let $\mathfrak{a}, \mathfrak{a}'$ be maximal abelian subspaces of \mathfrak{p}_{θ} . Pick a generic element $p \in \mathfrak{a}'$ as in (ii). By (iii) we can find $k \in K^c$ such that $\mathrm{Ad}_k(p) = a \in \mathfrak{a}$. Moreover, a is generic in $\mathrm{Ad}_k(\mathfrak{a}')$. So for every $b \in \mathfrak{a}$ we have $[b, \mathrm{Ad}_k(\mathfrak{a}')] = 0$ (as [b, a] = 0). By maximality of \mathfrak{a}' this implies that $b \in \mathrm{Ad}_k(\mathfrak{a}')$, i.e., $\mathfrak{a} \subset \mathrm{Ad}_k(\mathfrak{a}')$. Thus $\dim \mathfrak{a} \leq \dim \mathfrak{a}'$. Switching $\mathfrak{a}, \mathfrak{a}'$, we also get $\dim \mathfrak{a}' \leq \dim \mathfrak{a}$, hence $\dim \mathfrak{a} = \dim \mathfrak{a}'$ and $\mathfrak{a} = \mathrm{Ad}_k(\mathfrak{a}')$, as claimed.
- 44.4. The Cartan decomposition of semisimple linear groups. Let $\mathfrak{a} \subset \mathfrak{p}_{\theta}$ be a maximal abelian subspace and $A = \exp(\mathfrak{a}) \subset P_{\theta} \subset G_{\theta}$. This is a subgroup isomorphic to \mathbb{R}^n , where $n = \dim \mathfrak{a}$.

Theorem 44.12. (The Cartan decomposition) We have $G_{\theta} = K^{c}AK^{c}$. In other words, every element $g \in G_{\theta}$ has a factorization $g = k_{1}ak_{2}$, $k_{1}, k_{2} \in K^{c}$, $a \in A$.²⁷

Proof. Recall that we have the polar decomposition $G_{\theta} = K^{c}P_{\theta}$. Thus it suffices to show that every K^{c} -orbit on P_{θ} intersects A. To do so, take $Y \in P_{\theta}$ and let $y = \log Y \in \mathfrak{p}_{\theta}$. By Proposition 44.11 there is $k \in K^{c}$ such that $\mathrm{Ad}_{k}(y) \in \mathfrak{a}$. Then $\mathrm{Ad}_{k}(Y) \in A$, as claimed. \square

Remark 44.13. Theorem 44.12 has a straightforward generalization to reductive groups.

- **Example 44.14.** 1. For $G_{\theta} = GL_n(\mathbb{C})$, Theorem 44.12 reduces to a classical theorem in linear algebra: any invertible complex matrix can be written as U_1DU_2 , where U_1, U_2 are unitary and D is diagonal with positive entries.
- 2. Similarly, for $G_{\theta} = GL_n(\mathbb{R})$, Theorem 44.12 says that any invertible real matrix can be written as O_1DO_2 , where O_1, O_2 are orthogonal and D is diagonal with positive entries.

44.5. Maximal compact subgroups.

Theorem 44.15. (E. Cartan) Let G_{θ} be a real form of a connected semisimple complex group G. Then any compact subgroup L of G_{θ} is conjugate to a subgroup of K^c by an element of P_{θ} . Also every compact subgroup of G_{θ} is contained in a maximal one. Thus all maximal compact subgroups of G_{θ} are conjugate (to K^c).

²⁷This factorization is not unique.

Proof. We give a simplified version of Cartan's proof, due to G. D. Mostow.

First note that K^c is a maximal compact subgroup of G^{θ} . Indeed, if $K \supset K_c$ is a compact subgroup then the polar decomposition implies that $K = K_c \cdot (P_{\theta} \cap K)$. But if $Y \in P_{\theta} \cap K$ and $Y \neq 1$ then the sequence $Y^n \in K$ has no convergent subsequence (which is clear by looking at the eigenvalues of Y^n on \mathfrak{g}_{θ} . Thus $K = K_c$.

It remains to prove that every compact subgroup $L \subset G_{\theta}$ can be conjugated into K^c by an element of P_{θ} . The idea of proof is to define an L-invariant continuous real-valued function f on P_{θ} and show that it has a unique minimum Y using a convexity argument. Then the required conjugating element is obtained as $Y^{-\frac{1}{2}}$.

So let us proceed with this plan. Recall that we have a decomposition of the Lie algebra $\mathfrak{g}_{\theta} := \text{Lie}(G_{\theta})$ given by $\mathfrak{g}_{\theta} = \mathfrak{k}^c \oplus \mathfrak{p}_{\theta}$, which is the eigenspace decomposition of θ , and that the Killing form $B = B_{\mathfrak{g}}$ is positive on \mathfrak{p}_{θ} , negative on \mathfrak{k}^c , and θ -invariant. Thus we have a positive definite inner product on the real vector space \mathfrak{g}_{θ} given by

$$B_{\theta}(x,y) := -B(x,\theta(y)).$$

Denote by A^{\dagger} the adjoint operator to $A \in \operatorname{End}(\mathfrak{g}_{\theta})$ under this inner product. Then $A := \operatorname{Ad}_g$ is orthogonal $(A^{\dagger} = A^{-1})$ for $g \in K^c$, while for $g \in P_{\theta}$ it is self-adjoint $(A^{\dagger} = A)$, unimodular and positive definite as its eigenvalues are positive). So if g = kp with $k \in K^c$, $p \in P_{\theta}$ then $\overline{g} = kp^{-1}$, hence

$$(44.1) Ad_g^{\dagger} = Ad_{kp}^{\dagger} = Ad_p^{\dagger}Ad_k^{\dagger} = Ad_pAd_k^{-1} = Ad_{pk^{-1}} = Ad_{\overline{g}}^{-1}.$$

Let

$$S := \int_{L} \mathrm{Ad}_{h}^{\dagger} \mathrm{Ad}_{h} dh \in \mathrm{End}(\mathfrak{g}_{\theta}).$$

Then S is a self-adjoint positive definite operator. So it admits an orthonormal eigenbasis v_i with eigenvalues $\lambda_i > 0$. Let λ_{\min} be the smallest of these eigenvalues.

Consider the function $f: P_{\theta} \to \mathbb{R}$ given by

$$f(X) := \operatorname{Tr}(\operatorname{Ad}_X \cdot S) = \sum_i \lambda_i B_{\theta}(\operatorname{Ad}_X v_i, v_i).$$

So, since Ad_X is positive definite, we have

$$(44.2) f(X) \ge \lambda_{\min} \operatorname{Tr}(\operatorname{Ad}_X).$$

Note also that the group G_{θ} acts on P_{θ} by $g \circ X = gX\overline{g}^{-1}$, and by (44.1) the function f is L-invariant.

Recall that for any R > 0 the set of unimodular positive symmetric matrices A with $Tr(A) \leq R$ is compact, since so is its subset of diagonal

matrices, and any such matrix can be diagonalized by an orthogonal transformation. Since Ad_X is a positive self-adjoint operator on \mathfrak{g}_{θ} with respect to B_{θ} , it follows from (44.2) that the set of $X \in P_{\theta}$ with $f(X) \leq R$ is compact. This implies that f, being continuous, attains a minimum on P_{θ} . Suppose it attains a minimum at the point $Y = \exp(y), y \in \mathfrak{p}_{\theta}$.

Proposition 44.16. This minimum point is unique.

Proof. Suppose $Z = \exp(z)$, $z \in \mathfrak{p}_{\theta}$ is another minimum point. Consider the Cartan decomposition of the element $\exp(-\frac{z}{2})\exp(\frac{y}{2}) \in G_{\theta}$:

$$\exp(\frac{z}{2})\exp(-\frac{y}{2}) = k\exp(\frac{x}{2}),$$

 $k \in K^c$, $x \in \mathfrak{p}_{\theta}$. It follows that

$$\exp(\frac{x}{2}) = \exp(-\frac{y}{2}) \exp(\frac{z}{2})k = k^{-1} \exp(\frac{z}{2}) \exp(-\frac{y}{2}),$$

so multiplying, we get

$$\exp(x) = \exp(-\frac{y}{2}) \exp(z) \exp(-\frac{y}{2})$$

and thus

(44.3)
$$\exp(z) = \exp(\frac{y}{2}) \exp(x) \exp(\frac{y}{2}).$$

Consider the function

$$F(t) = f(\exp(\frac{y}{2})\exp(tx)\exp(\frac{y}{2})), \ t \in \mathbb{R}.$$

This function has a global minimum at t = 0, and also at t = 1 in view of (44.3). Thus the function F is not strictly convex. On the other hand, we have the following lemma.

Lemma 44.17. Let a, M be symmetric real matrices such that M is positive definite. Then the function

$$\phi(t) := \text{Tr}(\exp(ta)M), \ t \in \mathbb{R}$$

is convex, and is strictly convex if $a \neq 0$.

Proof. Conjugating a, M simultaneously by an orthogonal matrix, we may assume that a is diagonal, with diagonal entries a_i . Then we have

$$\phi(t) := \sum_{i} M_{ii} \exp(ta_i).$$

Since M is positive definite, $M_{ii} > 0$ and the statement follows.

Using Lemma 44.17 for $a := \operatorname{ad} x$ and $M := \exp(\frac{\operatorname{ad} y}{2}) S \exp(\frac{\operatorname{ad} y}{2})$ and the fact that F(t) is not strictly convex, we get that $\operatorname{ad} x = 0$, hence x = 0 (as \mathfrak{g} is semisimple) and y = z, as claimed.

Now, since the function f has a unique minimum point and is L-invariant, this minimum point must also be L-invariant. Thus we have $h \exp(y) = \exp(y)\overline{h}$ for all $h \in L$. It follows that

$$\exp(-\frac{y}{2})h\exp(\frac{y}{2}) = \exp(\frac{y}{2})\overline{h}\exp(-\frac{y}{2}) = \overline{\exp(-\frac{y}{2})h\exp(\frac{y}{2})}.$$

Thus the element $p := \exp(-\frac{y}{2}) = Y^{-\frac{1}{2}}$ conjugates L into K^c .

44.6. Cartan subalgebras in real semisimple Lie algebras. We have seen that Cartan subalgebras in a complex semisimple Lie algebra are conjugate, but this is not so for real semisimple Lie algebras, as demonstrated by the following exercise.

Exercise 44.18. (i) Let $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{R})$. For $0 \leq m \leq \frac{n}{2}$, let \mathfrak{h}_m be the space of matrices of the form

$$A = \bigoplus_{i=1}^{m} \begin{pmatrix} a_i & b_i \\ -b_i & a_i \end{pmatrix} \oplus \operatorname{diag}(c_1, ..., c_{n-2m})$$

such that $\operatorname{Tr}(A) = 0$. Show that \mathfrak{h}_m is a Cartan subalgebra of \mathfrak{g} and that \mathfrak{h}_m is not conjugate to \mathfrak{h}_n when $m \neq n$ (look at eigenvalues of elements of \mathfrak{h}_m in the vector representation). Conclude that Lemma 44.1 does not necessarily hold for non-compact forms of \mathfrak{g} .

- (ii) Show that every Cartan subalgebra in \mathfrak{g} is conjugate to one of the form \mathfrak{h}_m for some m.
- (iii) Classify Cartan subalgebras in other classical real simple Lie algebras (up to conjugacy).

Let us say that a semisimple element of \mathfrak{g}_{θ} is **split** if it acts on \mathfrak{g}_{θ} with real eigenvalues, and say that a commutative Lie subalgebra of \mathfrak{g}_{θ} is a **split subalgebra** if it consists of split elements. An invariant of a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}_{\theta}$ under conjugation is the dimension $s(\mathfrak{h})$ of the largest split subalgebra of \mathfrak{h} (consisting of all split elements of \mathfrak{h}). For example, a split real form \mathfrak{g}_{θ} has a split Cartan subalgebra with $s(\mathfrak{h}) = r = \operatorname{rank}(\mathfrak{g})$, and conversely, a real form that admits a split Cartan subalgebra is split. Also, in Exercise 44.18, $s(\mathfrak{h}_m) = n - 1 - m$.

Let us say that \mathfrak{h} is **maximally split** if $s(\mathfrak{h})$ is the largest possible, and **maximally compact** if $s(\mathfrak{h})$ is the smallest possible. For example, in Exercise 44.18, \mathfrak{h}_0 is maximally split and $\mathfrak{h}_{[n/2]}$ is maximally compact (where [n/2] is the floor of n/2). Also, a split Cartan subalgebra is maximally split and a compact one (i.e., one for which $\exp(\mathfrak{h})$ is a compact torus) is maximally compact, if they exist. Finally, the Cartan subalgebra $\mathfrak{h}_+^c \oplus i\mathfrak{h}_-^c$, where \mathfrak{h}_+^c , \mathfrak{h}_-^c are as in the proof of Proposition 41.7, is maximally compact.

Note that $s(\mathfrak{h})$ may also be interpreted as the signature of the Killing form restricted to \mathfrak{h} , which equals $(s(\mathfrak{h}), r - s(\mathfrak{h}))$.

- **Theorem 44.19.** (i) A θ -stable Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}_{\theta}$ is maximally split iff $\mathfrak{h}_{-} := \mathfrak{h} \cap \mathfrak{p}_{\theta}$ is a maximal abelian subspace in \mathfrak{p}_{θ} .
- (ii) A θ -stable Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}_{\theta}$ is maximally compact iff $\mathfrak{h}_+ := \mathfrak{h} \cap \mathfrak{k}^c$ is a Cartan subalgebra in \mathfrak{k}^c , and in this case $s(\mathfrak{h}) = \operatorname{rank}(\mathfrak{g}) \operatorname{rank}(\mathfrak{k})$.
- (iii) Any two maximally split θ -stable Cartan subalgebras are conjugate by K^c .
- (iv) Any two maximally compact θ -stable Cartan subalgebras are conjugate by K^c .
- (v) Any Cartan subalgebra in \mathfrak{g}_{θ} is conjugate to a θ -stable one by an element of G_{θ} (or, equivalently, P_{θ}).
- *Proof.* (i) It is clear that if \mathfrak{h}_{-} is a maximal abelian subspace of \mathfrak{p}_{θ} then \mathfrak{h} is maximally split, since by Proposition 44.11 any abelian subspace of \mathfrak{p}_{θ} can be conjugated into \mathfrak{h}_{-} . Conversely, if \mathfrak{h} is maximally split, suppose that $a \in \mathfrak{p}_{\theta}, a \notin \mathfrak{h}_{-}$ with $[a, \mathfrak{h}_{-}] = 0$. Then $\mathfrak{h}'_{-} = \mathfrak{h}_{-} \oplus \mathbb{R}\mathfrak{a}$, and let \mathfrak{h}' be a Cartan subalgebra of \mathfrak{g}_{θ} containing \mathfrak{h}'_{-} . Then $s(\mathfrak{h}') > s(\mathfrak{h})$, a contradiction.
- (ii) It is clear that if \mathfrak{h}_+ is a Cartan subalgebra of \mathfrak{k}^c then \mathfrak{h} is maximally compact. Also given a Cartan subalgebra $\mathfrak{h}_+ \subset \mathfrak{k}^c$, take a Cartan subalgebra \mathfrak{h} of \mathfrak{g}_{θ} containing \mathfrak{h}_+ . Then $s(\mathfrak{h}) \leq \operatorname{rank}(\mathfrak{g}) \operatorname{rank}(\mathfrak{k})$. This implies that for any maximally compact \mathfrak{h} , we have that $\mathfrak{h} \cap \mathfrak{k}^c$ is a Cartan subalgebra in \mathfrak{k}^c , and $s(\mathfrak{h}) = \operatorname{rank}(\mathfrak{g}) \operatorname{rank}(\mathfrak{k})$.
- (iii) Let $\mathfrak{h}, \mathfrak{h}'$ be maximally split θ -stable Cartan subalgebras in \mathfrak{g}_{θ} . Then $\mathfrak{h}_{-}, \mathfrak{h}'_{-}$ are maximal abelian subspaces of \mathfrak{p}_{θ} . So they are conjugate by K^c by Proposition 44.11, thus we may assume that $\mathfrak{h}_{-} = \mathfrak{h}'_{-}$. Let Z^c_{-} be the centralizer of \mathfrak{h}_{-} in K^c . It is a compact group, and it is clear that $\mathfrak{h}_{+}, \mathfrak{h}'_{+} \subset \text{Lie}(Z^c_{-})$ are Cartan subalgebras. Hence they are conjugate by an element of Z^c_{-} , as desired.
- (iv) Let $\mathfrak{h}, \mathfrak{h}'$ be maximally compact θ -stable Cartan subalgebras in \mathfrak{g}_{θ} . Then $\mathfrak{h}_{+}, \mathfrak{h}'_{+}$ are Cartan subalgebras of \mathfrak{k}^{c} , so they are conjugate by K^{c} and we may assume that $\mathfrak{h}_{+} = \mathfrak{h}'_{+}$. Let Z_{+} be the centralizer of \mathfrak{h}_{+} in G_{θ} and $\mathfrak{z}_{+} = \mathrm{Lie}(Z_{+})$. This is a θ -stable reductive subalgebra of \mathfrak{g}_{θ} containing $\mathfrak{h}, \mathfrak{h}'$ whose center contains \mathfrak{h}_{+} . Thus $\mathfrak{h}_{-}, \mathfrak{h}'_{-} \subset \mathrm{Lie}(Z_{+})/\mathfrak{h}_{+}$ are θ -stable split Cartan subalgebras, so they are conjugate by $Z_{+}^{c} := Z_{+} \cap K^{c}$ owing to (iii). This implies the statement.
- (v) The proof is by induction in the rank r of \mathfrak{g}_{θ} , with obvious base r = 0. Suppose the statement is known for rank < r and let us prove it for rank r. Let $\mathfrak{h} \subset \mathfrak{g}_{\theta}$ be a Cartan subalgebra. We have $\mathfrak{h} = \mathfrak{h}_+ \oplus \mathfrak{h}_-$ where $\mathfrak{h}_+, \mathfrak{h}_-$ are the subspaces of elements with imaginary and real

eigenvalues on the adjoint representation, respectively. The Lie group $H_+ = \exp(\mathfrak{h}_+)$ is a compact torus, so it is contained in a maximal compact subgroup. Hence by Theorem 44.15 H_+ is conjugate to a subgroup of K^c . We may thus assume that $\mathfrak{h}_+ \subset \mathfrak{k}^c$.

As in (iv), let $Z_+ \subset G_\theta$ be the centralizer of \mathfrak{h}_+ and $\mathfrak{z}_+ = \mathrm{Lie}(Z_+)$. It suffices to show that \mathfrak{h} is conjugate to a θ -stable Cartan subalgebra under Z_+ . This is equivalent to saying that \mathfrak{h}_- is conjugate to a θ -stable Cartan subalgebra of $\mathfrak{z}_+/\mathfrak{h}_+$ under Z_+/H_+ . So if $\mathfrak{h}_+ \neq 0$ then the statement follows by the induction assumption, since the rank of $\mathfrak{z}_+/\mathfrak{h}_+$ is smaller than r. On the other hand, if $\mathfrak{h}_+ = 0$ then \mathfrak{h} is split, so \mathfrak{g}_θ is split. In this case, let \mathfrak{h}_0 be the standard Cartan subalgebra of \mathfrak{g}_θ . Fixing systems of simple roots Π for \mathfrak{h} and Π_0 for \mathfrak{h}_0 , there exists an isomorphism $\phi: (\mathfrak{g}_\theta, \mathfrak{h}, \Pi) \to (\mathfrak{g}_\theta, \mathfrak{h}_0, \Pi_0)$ which is given by an inner automorphism of \mathfrak{g}_θ , i.e., an element $g \in G_{\mathrm{ad},\theta}$, which completes the induction step and the proof. \square

44.7. Integral form of the Weyl character formula.

Proposition 44.20. Let f be a conjugation-invariant continuous function on a compact connected Lie group K with a maximal torus $T \subset K$ and Haar probability measure dk. Then

$$\int_{K} f(k)dk = \frac{1}{|W|} \int_{T} f(t)|\Delta(t)|^{2}dt,$$

where $\Delta(t)$ is the Weyl denominator,²⁸

$$\Delta(t) = \rho(t)^{-1} \prod_{\alpha \in R^+} (\alpha(t) - 1).$$

Proof. Since characters of irreducible representations span a dense subspace in the space of conjugation-invariant continuous functions on K, it suffices to check this for $f = \chi_{\lambda}$, the character of the irreducible representation L_{λ} . Then the left hand side is $\delta_{0\lambda}$ by orthogonality of characters. On the other hand, the Weyl character formula implies that the right hand side also equals $\delta_{0\lambda}$.

Example 44.21. Let f be a conjugation-invariant continuous function on U(n). Then

$$\int_{U(n)} f(k)dk =$$

²⁸Note that the function $\rho(t)$ may be multivalued, but its branches differ from each other by a root of unity, so the function $|\Delta(t)|$ is well defined. Namely, $|\Delta(t)| = |\Delta_0(t)|$ where $\Delta_0(t) = \prod_{\alpha \in R^+} (\alpha(t) - 1)$.

$$\frac{1}{(2\pi)^n n!} \int_{|z_1|=...=|z_n|=1} f(\operatorname{diag}(z_1,...,z_n)) \prod_{m< j} |z_m-z_j|^2 d\theta_1....d\theta_n$$
 where $z_j=e^{i\theta_j}$.

Thus we see that the orthogonality of characters can be written as

$$\frac{1}{|W|} \int_{T} \chi_{\lambda}(t) \overline{\chi_{\mu}(t)} |\Delta(t)|^{2} dt = \delta_{\lambda,\mu}.$$

Exercise 44.22. (i) Let $\mathfrak{k} = \text{Lie}K$ with Cartan subalgebra \mathfrak{k} and f be a compactly supported K-invariant continuous function on \mathfrak{k} . Show that

$$\int_{\mathfrak{k}} f(a)da = \frac{1}{|W|} \int_{\mathfrak{k}} f(u) |\Delta_{\mathrm{rat}}(u)|^2 du,$$

where $\Delta_{\mathrm{rat}}(u) = \prod_{\alpha \in R_+} \alpha(u)$ is the rational version of the Weyl denominator.

(ii) Write explicitly the identity you get if you set $f(a) := e^{B_{\mathfrak{k}}(a,a)}$ (compute the Gaussian integral on the left hand side).

Hint. In Proposition 44.20, make a change of variable $k = \exp(\varepsilon a)$, $t = e^{\varepsilon u}$ for small $\varepsilon > 0$ and then send ε to zero.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.