40. Forms of semisimple Lie algebras over an arbitrary field

40.1. Automorphisms of semisimple Lie algebras. We showed in Corollary 17.10 that for a complex semisimple \mathfrak{g} , the group $\operatorname{Aut}(\mathfrak{g})$ is a Lie group with Lie algebra \mathfrak{g} . We also showed in Theorem 20.10 that its connected component of the identity $\operatorname{Aut}(\mathfrak{g})^\circ$ acts transitively on the set of Cartan subalgebras in \mathfrak{g} . This group is called the **adjoint** group attached to \mathfrak{g} , and we will denote it by G_{ad} .

Let $\mathfrak{h} \subset \mathfrak{g}$ be a Cartan subalgebra, and $H \subset G_{\mathrm{ad}}$ be the corresponding connected Lie subgroup. This subgroup can be viewed as the group of linear operators $\mathfrak{g} \to \mathfrak{g}$ which act by 1 on \mathfrak{h} and by $e^{\alpha(x)}$, $x \in \mathfrak{h}$, on each \mathfrak{g}_{α} . Thus the exponential map $\mathfrak{h} \to H$ defines an isomorphism $\mathfrak{h}/2\pi i P^{\vee} \cong H$. The group H is called the **maximal torus** of G_{ad} corresponding to \mathfrak{h} .

Proposition 40.1. The normalizer N(H) of H in G_{ad} coincides with the stabilizer of \mathfrak{h} and contains H as a normal subgroup, so that N(H)/H is naturally isomorphic to the Weyl group W.

Proof. First note that since $SL_2(\mathbb{C})$ is simply connected, for any simple root α_i we have a homomorphism $\eta_i : SL_2(\mathbb{C}) \to G_{ad}$ which identifies $\text{Lie}(SL_2(\mathbb{C}))$ with the \mathfrak{sl}_2 -subalgebra of \mathfrak{g} corresponding to this simple root. Let

(40.1)
$$S_i := \eta_i \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right).$$

Given $w \in W$, pick a decomposition $w = s_{i_1}...s_{i_n}$, and let $\widetilde{w} := S_{i_1}...S_{i_n} \in G_{\mathrm{ad}}$.²¹ Note that \widetilde{w} acts on \mathfrak{h} by w. So if $w = w_1w_2 \in W$ then $\widetilde{w} = \widetilde{w}_1\widetilde{w}_2h$, where h preserves the root decomposition and acts trivially on \mathfrak{h} . Thus if $h|_{\mathfrak{g}_{\alpha_j}} = \exp(b_j)$ then $h = \exp(\sum_j b_j\omega_j^{\vee}) \in H$. So the elements \widetilde{w} and H generate a subgroup $N \subset N(H)$ of G_{ad} such that $N/H \cong W$.

It remains to show that N(H) = N. To this end, for $x \in N(H)$, let $\alpha'_i = x(\alpha_i)$. Then α'_i form a system of simple roots, so there exists $w \in W$ such that $w(\alpha'_i) = \alpha_{p(i)}$, where p is some permutation. Then $\widetilde{w}x(\alpha_i) = \alpha_{p(i)}$. So $\widetilde{w}x$ defines a Dynkin diagram automorphism of \mathfrak{g} . Since this automorphism is defined by an element of G_{ad} , it stabilizes all fundamental representations, so p = id, hence $\widetilde{w}x \in H$, as claimed. \Box

In particular, we see that H is a maximal commutative subgroup of G_{ad} , hence the terminology "maximal torus".

²¹The element \tilde{w} in general depends on the decomposition of w as a product of simple reflections. One can show it does not if we take only reduced decompositions, but we will not need this.

Remark 40.2. Note that in general N(H) is **not** isomorphic to $W \ltimes H$: it can be a non-split extension of W by H.

Another obvious subgroup of $\operatorname{Aut}(\mathfrak{g})$ is the finite group $\operatorname{Aut}(D)$ of automorphisms of the Dynkin diagram of \mathfrak{g} , which just permutes the generators e_i, f_i, h_i in the Serre presentation. Thus we have a natural homomorphism

 $\xi : \operatorname{Aut}(D) \ltimes G_{\operatorname{ad}} \to \operatorname{Aut}(\mathfrak{g}),$

which is the identity map on the connected components of 1. This homomorphism is clearly injective, since the center of G_{ad} is trivial and any nontrivial element of Aut(D) nontrivially permutes fundamental representations of \mathfrak{g} .

Proposition 40.3. ξ is an isomorphism.

Proof. Our job is to show that ξ is surjective, i.e. for $a \in \operatorname{Aut}(\mathfrak{g})$ show that $a \in \operatorname{Im}\xi$. By Theorem 20.10, we may assume without loss of generality that a preserves a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (indeed, this can be arranged by multiplying by an element of G_{ad} , since G_{ad} acts transitively on Cartan subalgebras of \mathfrak{g}). Then by multiplying by an element of $\operatorname{Aut}(D) \cdot N(H)$ we can make sure that a acts trivially on \mathfrak{h} and \mathfrak{g}_{α_i} . Then a = 1, which implies the proposition.

40.2. Forms of semisimple Lie algebras. We have classified semisimple Lie algebras over \mathbb{C} , but what about other fields (say of characteristic zero), notably \mathbb{R} (the case relevant to the theory of Lie groups)?

To address this question, note that the Serre presentation of a semisimple Lie algebra is defined over \mathbb{Q} , so it defines a Lie algebra of the same dimension over any such field, by imposing the same generators and relations. Such a Lie algebra is called **split**. So for example, over an algebraically closed field of characteristic zero, any semisimple Lie algebra is automatically split.

Now let \mathfrak{g} be a semisimple Lie algebra over a field K of characteristic zero which splits over a Galois extension L of K, i.e., $\mathfrak{g} \otimes_K L = \mathfrak{g}_L$ is split (corresponds to a Dynkin diagram via Serre's presentation). Can we classify such \mathfrak{g} ?

To this end, let $\Gamma = \operatorname{Gal}(L/K)$ be the Galois group of L over K and observe that we can recover \mathfrak{g} as the subalgebra of invariants \mathfrak{g}_L^{Γ} . So \mathfrak{g} is determined by the action of Γ on the split semisimple Lie algebra \mathfrak{g}_L . Note that this action is **twisted-linear**, i.e., additive and $g(\lambda x) =$ $g(\lambda)g(x)$ for $x \in \mathfrak{g}_L$, $\lambda \in L$, $g \in \Gamma$. The simplest example of such an action is the action $\rho_0(g)$ which preserves all the generators e_i, f_i, h_i and just acts on the scalars, which corresponds to the split form of \mathfrak{g} . So any twisted-linear action ρ can be written as

$$\rho(g) = \eta(g)\rho_0(g)$$

for some map

$$\eta: \Gamma \to \operatorname{Aut}(\mathfrak{g}_L).$$

In order that ρ be a homomorphism, we need

$$\eta(gh)\rho_0(gh) = \eta(g)\rho_0(g)\eta(h)\rho_0(h),$$

which is equivalent to

$$\eta(gh) = \eta(g) \cdot g(\eta(h)),$$

where for $a \in \operatorname{Aut}(\mathfrak{g}_L)$, $g(a) := \rho_0(g)a\rho_0(g)^{-1}$. In other words, η is a 1-cocycle. We will denote the Lie algebra attached to such cocycle η by \mathfrak{g}_{η} .

It remains to determine when \mathfrak{g}_{η_1} is isomorphic to \mathfrak{g}_{η_2} . This will happen exactly when the corresponding representations ρ_1 and ρ_2 are isomorphic, i.e., there is $a \in \operatorname{Aut}(\mathfrak{g}_L)$ such that $\rho_1(g)a = a\rho_2(g)$, i.e.,

$$\eta_1(g)\rho_0(g)a = a\eta_2(g)\rho_0(g),$$

or

$$\eta_1(g) = a\eta_2(g)g(a)^{-1}.$$

Two 1-cocycles related in this way are called **cohomologous** (obviously, an equivalence relation), and the set of equivalence classes of cohomologous cocycles is called the **first Galois cohomology** of Γ with coefficients in Aut(\mathfrak{g}_L) and denoted by $H^1(\Gamma, \operatorname{Aut}(\mathfrak{g}_L))$. Note that this is cohomology with coefficients in a nonabelian group, so it is just a set and not a group.

So we obtain

Proposition 40.4. Semisimple Lie algebras \mathfrak{g} over K which split over a Galois extension L of K are classified by the first Galois cohomology $H^1(\Gamma, \operatorname{Aut}(\mathfrak{g}_L)).$

Remark 40.5. There is nothing special about semisimplicity or about Lie algebras here – this works for any kind of linear algebraic structures, such as associative algebras, algebraic varieties, schemes, etc.

40.3. Real forms of a semisimple Lie algebra. Let us now make this classification more concrete in the case $K = \mathbb{R}$, $L = \mathbb{C}$, which is relevant to classification of real semisimple Lie groups. In this case, $\Gamma = \mathbb{Z}/2$ generated by complex conjugation $s \mapsto \overline{s}$ and, as we have shown, $\operatorname{Aut}(\mathfrak{g}_L) = \operatorname{Aut}(D) \ltimes G_{\operatorname{ad}}$, where D is the Dynkin diagram of \mathfrak{g} and G_{ad} is the corresponding connected adjoint complex Lie group. Also since we always have $\eta(1) = 1$, the cocycle η is determined by the element $s = \eta(-1) \in \operatorname{Aut}(D) \ltimes G_{\operatorname{ad}}$. Moreover, s must satisfy the cocycle condition

 $s\overline{s}=1$

and the corresponding real Lie algebra, up to isomorphism, depends only on the cohomology class of s, which is the equivalence class modulo transformations $s \mapsto as\overline{a}^{-1}$. We thus obtain the following theorem.

Theorem 40.6. Real semisimple Lie algebras whose complexification is \mathfrak{g} (i.e., real forms of \mathfrak{g}) are classified by $s \in \operatorname{Aut}(D) \ltimes G_{\operatorname{ad}}$ such that $s\overline{s} = 1$ modulo equivalence $s \mapsto as\overline{a}^{-1}$, $a \in \operatorname{Aut}(\mathfrak{g})$, where complex conjugation acts trivially on $\operatorname{Aut}(D)$.

We denote the real form of \mathfrak{g} corresponding to s by $\mathfrak{g}_{(s)}$. Namely, $\mathfrak{g}_{(s)} = \{x \in \mathfrak{g} : \overline{x} = s(x)\}$. For example, $\mathfrak{g}_{(1)}$ is the split form, consisting of real $x \in \mathfrak{g}$, i.e., such that $\overline{x} = x$.

Alternatively, one may define the **antilinear involution** $\sigma_s(x) = \overline{s(x)}$, and $\mathfrak{g}_{(s)}$ is the set of fixed points of σ_s in \mathfrak{g} .

In particular, such s defines an element $s_0 \in \operatorname{Aut}(D)$ such that $s_0^2 = 1$. Note that the conjugacy class of s_0 is invariant under equivalences. The element s_0 permutes connected components of D, preserving some and matching others into pairs. Thus every semisimple real Lie algebra is a direct sum of simple ones, and each simple one either has a connected Dynkin diagram D (i.e., the complexified Lie algebra \mathfrak{g} is still simple) or consists of two identical components (i.e., the complexified Lie algebra is $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}$ for some simple complex \mathfrak{a}). In the latter case $s = (g, \overline{g}^{-1})s_0$ where s_0 is the transposition and $g \in \operatorname{Aut}(\mathfrak{a})$, so s is cohomologous to s_0 by taking a = (g, 1). Thus in this case $\mathfrak{g}_{(s)} = \mathfrak{g}_{(s_0)} = \mathfrak{a}$, a complex simple Lie algebra regarded as a real Lie algebra.

It remains to consider the case when D is connected, i.e., \mathfrak{g} is simple.

Definition 40.7. (i) A real form $\mathfrak{g}_{(s)}$ of a complex simple Lie algebra \mathfrak{g} is said to be **inner** to $\mathfrak{g}_{(s')}$ if s' = gs up to equivalence, where $g \in G_{ad}$ (i.e., s and s' differ by an inner automorphism). The **inner class** of $\mathfrak{g}_{(s)}$ is the collection of all real forms inner to $\mathfrak{g}_{(s)}$. In particular, an **inner form** is a form inner to the split form.

(ii) $\mathfrak{g}_{(s)}$ is called **quasi-split** if $s = s_0 \in \operatorname{Aut}(D)$ (modulo equivalence).

So in particular any real form is inner to a unique quasi-split form, and a real form that is both inner and quasi-split is split.

Exercise 40.8. Let $\mathfrak{g}_{\mathbb{R}}$ be a real semisimple Lie algebra and $\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{g}_{\mathbb{R}}$ a Cartan subalgebra (the centralizer of a regular semisimple element

of $\mathfrak{g}_{\mathbb{R}}$). Let $\mathfrak{h} \subset \mathfrak{g}$ be their complexifications, and $H \subset G_{\mathrm{ad}}$ the corresponding complex Lie groups. Let **K** be the kernel of the natural map of Galois cohomology sets $H^1(\mathbb{Z}/2, N(H)) \to H^1(\mathbb{Z}/2, G_{\mathrm{ad}})$ (i.e., the preimage of the unit element), where $\mathbb{Z}/2$ acts on G_{ad} by complex conjugation associated to the real form $\mathfrak{g}_{\mathbb{R}}$ of \mathfrak{g} .

(i) Show that conjugacy classes of Cartan subalgebras in $\mathfrak{g}_{\mathbb{R}}$ are bijectively labeled by elements of \mathbf{K} , with the unit element corresponding to $\mathfrak{h}_{\mathbb{R}}$.

(ii) Show that \mathbf{K} is a finite set.²²

 $^{^{22}}$ For classical Lie algebras the set **K** will be computed explicitly in Exercise 44.18. The explicit answer is known for exceptional Lie algebras as well, but we will not discuss it here.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.