
39. The hydrogen atom, II

39.1. Quantum numbers. The number n in Theorem 38.2 is called
the principal quantum number; it characterizes the energy of the
state. The number ` is called the azimuthal quantum number; it
characterizes the eigenvalue of the spherical Laplacian ∆sph, which has
the physical interpretation as (minus) the orbital angular momen-
tum operator L2 = L2

x + L2
y + L2

z. Note that the operators iLx, iLy
and iLz are just the generators of the Lie algebra Lie(SO(3)) acting on
R3, i.e., we have

[Lx, Ly] = −iLz, [Ly, Lz] = −iLx, [Lz, Lx] = −iLy.
Thus, L2 is simply a Casimir of Lie(SO(3)). Namely, recall that the

standard Casimir C acts on L2` as 2`(2`+2)
4

= `(`+ 1), so L2 = C.
Finally, m is called the magnetic quantum number, and it is the

eigenvalue of Lz = −i∂θ (in spherical coordinates).

Corollary 39.1. The space Wn of states with principal quantum num-
ber n has dimension n2.

Proof. By Theorem 38.2, this dimension is
∑n−1

`=0 (2`+ 1) = n2. �

In fact, this analysis applies not just to hydrogen but to other chem-
ical elements whose nucleus has charge > 1, if we neglect interaction
between electrons. Thus it can potentially be used to explain patterns
of the periodic table.

39.2. Coulomb waves. We note, however, that ψn`m do not form
a basis of L2(R3). Instead, they span (topologically) a proper closed
subspace of L2

0(R3) of L2(R3) on which the operator H is bounded and
negative definite. So if a smooth function ϕ on R3 (say, with compact
support away from the origin) satisfies (Hϕ,ϕ) ≥ 0 then ϕ /∈ L2

0(R3).
It is easy to construct such examples: let ϕ be a hat function and
ϕs(r) = ϕ(r + sa), where a is any nonzero vector. We then have

(Hϕs, ϕs) =
1

2

∫
R3

|∇ϕ(r)|2dV −
∫
R3

|ϕ(r)|2

|r− sa|
dV,

and we observe that the first term is positive and the second one goes to
zero as s→∞, so for large s this expression is positive. This happens
because besides bound states the hydrogen atom also has continuous
spectrum [0,∞) corresponding to free electrons which are not bound
by the nucleus. This part of the spectrum can be computed similarly to
the discrete (bound state) spectrum, except that the energy will take
arbitrary nonnegative values. The corresponding wavefunctions are
not normalizable (i.e., not in L2), and are given by similar formulas to
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bound states but with imaginary n. Their continuous linear combina-
tions satisfying appropriate boundary conditions are called Coulomb
waves.

39.3. Spin. Also, the answer n2 for the number of states in the n-
th energy level does not quite agree with the periodic table, which
suggests it should rather be 2n2: the numbers of electrons at each
level are 2, 8, 18, 32.... This is because the Schrödinger model which
we computed is not quite right, as it does not take into account an
additional degree of freedom called spin (a sort of intrinsic angular
momentum). Namely, it turns out that the space of states of an electron
is not L2(R3) but rather L2(R3) ⊗ C2, with the same Hamiltonian as
before but the Lie algebra Lie(SO(3)) acting diagonally (where C2 is
the 2-dimensional irreducible representation of this Lie algebra). Thus
the space of states of the n-th energy level taking spin into account is

Vn = (L0 ⊕ L2 ⊕ ...⊕ L2n−2)⊗ L1 = 2L1 ⊕ 2L3 ⊕ ...⊕ 2L2n−3 ⊕ L2n−1

and dimVn = 2n2. In other words, we have the additional spin oper-
ator, which is just the operator

S =

(
1
2

0
0 −1

2

)
acting on the C2 factor (in the standard basis e+, e−). So the total
spin (=angular momentum) of a state ism+s, where s is the eigenvalue
of S, and we have the basic states ψn`m+ = ψn`m ⊗ e+ and ψn`m− =
ψn`m ⊗ e− with spins m+ 1

2
and m− 1

2
respectively.

Note also that Vn is not a representation of SO(3) but is only a
representation of its double cover SU(2) where −Id acts by −1. How-
ever, this anomaly does not mean a violation of the SO(3) symmetry,
since true quantum states are unit vectors in the Hilbert space up to
a phase factor.

39.4. The Pauli exclusion principle. Suppose now that we have
k electrons, each at the n-th energy level. If the electrons had been
marked, the space of states for them would have been V ⊗kn . But in real
life they are indistinguishable, so we need to mod out by permutations.
So we might think the space of states is SkVn. However, as electrons are
fermions, this answer turns out to be not correct: the correct answer
is ∧kVn rather than SkVn. In other words, when two identical electrons
are switched, the corresponding vector changes sign. This is another
example of a sign which does not violate symmetry since states are well
defined only up to a phase factor.
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In particular, this implies that if k > 2n2 then the space of states is
zero, i.e., there cannot be more than 2n2 electrons at the n-th energy
level (the Pauli exclusion principle). This is exactly the kind of
pattern we see in the periodic table.

w

are operators on functions in R3). Let r = |r| =
√
x2 + y2 + z2 (the

operator of multiplication by this function) and H = 1
2
p2 + U(r) =

−1
2
∆ + U(r) be a rotationally symmetric Schrödinger operator on R3

with potential U(r) (smooth for r > 0).
(i) Show that the components of iL are vector fields that define the

action of the Lie algebra Lie(SO(3)) on functions on R3 induced by
rotations. Deduce that [L,p2] = 0 (componentwise).

(ii) Let A0 = 1
2
(p × L − L × p). Show that [A0,p

2] = 0 (again
componentwise).

(iii) Let A := A0 + φ(r)r. Show that there exists a function φ such
that [A, H] = 0 if and only if U is the Coulomb potential C

r
+ D, and
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Namely, the first energy level has two slots (the first row, or period,
of the table), and the second one has 8 slots (the second period of the
table). Further down interactions between electrons start to matter
and the picture is modified (giving still 8 slots in the next period in-
stead of 18), but we still see a similar pattern: 8 slots in the third
period, 18 in periods 4,5, and 32 in periods 6,7. This arrangement
is justified by the fact that the columns (groups) of elements, which
have the same number of electrons at the last level, have similar chem-
ical properties. For example, in the first column we have alkali metals
(except hydrogen) and in the last one we have inert gases.

Exercise 39.2. Let r = (x, y, z) and p = (−i∂x, −i∂y, −i∂z) be the

position and momentum operators in R3. Let L = r × p be the angu-
lar momentum operator (these are actually vectors hose components

https://ocw.mit.edu/help/faq-fair-use
https://commons.wikimedia.org/wiki/User:Double_sharp
https://commons.wikimedia.org/wiki/File:Simple_Periodic_Table_Chart-blocks.svg


then φ is uniquely determined, and compute φ. The corresponding
operator A is called the quantum Laplace-Runge-Lenz vector.20

(iv) (Hidden symmetry of the hydrogen atom). By virtue of (iii),
the components of A act (by second order differential operators) on
functions on R3 commuting with H. In particular, they act on each
Wn (note that in this problem we ignore spin). Use these components
to define an action of so4 = so3 ⊕ so3 = sl2 ⊕ sl2 on Wn so that the
geometric one (generated by the components of L) is the diagonal copy.

(v) Show that Wn = Ln−1 � Ln−1 as a representation of sl2 ⊕ sl2.
(vi) Now include spin by tensoring with the representation C2 of

SU(2) and show that Vn = Ln−1 � Ln−1 � L1 as a representation of
so4 ⊕ su2 = sl2 ⊕ sl2 ⊕ sl2. This representation is irreducible, which
explains why the n-th energy level of H is degenerate, with multiplicity
(i.e., dimension) 2n2.

Exercise 39.3. Let H = −1
2
∆ + 1

2
r2 be the Hamiltonian of the quan-

tum harmonic oscillator in Rn, where r =
√
x2

1 + ...+ x2
n. Compute

the eigenspaces of H in L2(Rn) as representations of SO(n) and find
the eigenvalues of H with multiplicities and an orthogonal eigenbasis.

Hint. Show that the operator er
2/2 ◦H ◦ e−r2/2 preserves the space

of polynomials C[x1, ..., xn], and find an eigenbasis Pi1i2...in for this op-
erator in this space (these should express via Hermite polynomials; use
that H = H1 + ... + Hn is the sum of operators Hi depending only on
xi). This will give orthogonal eigenfunctions

ψi1...in(r) = Pi1...in(r)e−r
2/2

in L2(Rn). Using properties of Hermite polynomials, conclude that
these are complete. Then use Exercise 31.11.

20In the classical mechanics setting, the existence of this conservation law is the
reason why orbits for Coulomb potential are periodic (Kepler’s law), while this is
not so for other rotationally invariant potentials, except harmonic oscillator. It
was discovered many times over the last 300 years. This is one of the most basic
examples of “hidden symmetry”.
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