38. The hydrogen atom, I

38.1. The Schrodinger equation. Let us now apply our knowledge
of non-abelian harmonic analysis to solve a basic problem in quantum
mechanics — describe the dynamics of the hydrogen atom.

The mechanics of the hydrogen atom is determined by motion of
a charged quantum particle (electron) in a rotationally invariant at-
tracting electric field. The potential of such a field is —%, where
r? = 2% + y? + 2% (since this theory does not have nontrivial dimen-
sionless quantities, we may choose the units of measurement so that all
constants are equal to 1). Thus, the wave function ¢ (z,y, z,t) for our
particle obeys the Schrodinger equation

Zétw - H¢7
where H is the quantum Hamiltonian
H = —lA — 1,
2 r
and A = 07 + 02 + 07 is the Laplace operator. Recall also that for each
t, the function ¢(—, —, —, ¢) is in L*(R?) and ||¢)|| = 1. The problem is

to solve this equation given the initial value ¥(x, vy, z,0).*

The Schrodinger equation can be solved by separation of variables
as follows. Suppose we have an orthonormal basis 1y of L?(R3) such
that Hl/}N = EN@/)N. Then if

77/)(ZL',y,Z,0) = Zchvz)N(xvy’Z)

N
(i.e., CN = (1/),1#]\/)) then

¢($7 Y, z, t) = Z CNe_iENth(xa Y, Z)a
N

So our job is to find such basis ¥y, i.e., diagonalize the self-adjoint
operator H.

Note that the operator H is unbounded and defined only on a dense
subspace of L?(R), and although it is symmetric ((H,n) = (¢, Hn)
for compactly supported functions), it is very nontrivial to say what
precisely it means that H is self-adjoint. Also, this operator turns out
to have both discrete and continuous spectrum, which means that there
is actually no basis with the desired properties — eigenfunctions of H
which lie in L?(R?) span a proper closed subspace of this Hilbert space.
However, this will not be a problem for our calculation.

9Recall that 1) determines the probability p(U, t) to find the electron in a region
U C R? at a time ¢, which is given by the formula p(U, t) = fU [Y(z,y, 2, t)|*dedydz.
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38.2. Bound states. We first focus on bound states, i.e., solutions
of the stationary Schrodinger equation

Hey = B

which belong to L?(R?) and thus decay at infinity in the sense of L*-
norm (this is the situation when the electron does not have enough
energy to escape from the nucleus, i.e., it is “bound” to it and thus un-
likely to be found far from the origin, which explains the terminology).
In particular, such eigenfunctions must have negative energy, £ < 0.
To do so, let us utilize the rotational symmetry and write this equation
in spherical coordinates. For this we just need to write the Laplacian
A in spherical coordinates. Let us write r = ru, where u € S? (i.e.,
lu| = 1). We have
A=A+ S50

where

Asph = ﬁ@g + ﬁa(z, sin ¢8¢
is a differential operator on S? (the spherical Laplacian, or the
Laplace-Beltrami operator) and

A, =02+ 29,
is the radial part of A (check it!). So our equation looks like
R+ 20,4 + 2 + F At = —2E).

This equation can be solved by again applying separation of variables.
Namely, we look for solutions in the form

P(r,a) = f(r)¢(u),

where

(38.1) Agpné + A =0.

Then we obtain the following equation for f:

(33.2) P+ 2P0 + (2~ A+ 2B)f(r) = 0.

So now we have to solve equation (38.1) and in particular determine
which values of A occur.

To this end, recall that the operator Ay, is rotationally invariant,
so it preserves the space L2,(S?) of functions on S* belonging to fi-
nite dimensional representations of SO(3). Moreover, it preserves the
decomposition L2, (S?) = @goL of this space into irreducible repre-
sentations of SO(3) (Exercise 35.7(ii)), and on each Lo, it acts by a
certain scalar —),. To compute this scalar, consider the vector Y,? in

Loy of weight zero. This vector is invariant under SO(2) changing 6,
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so it depends only on ¢; in fact, it is a polynomial of degree ¢ in cos ¢:
Y, = Py(cos ¢). Also orthogonality of the decomposition implies that

/_l Pi(2)P,(2)dz =0, k # n.

1

This means that P, are the Legendre polynomials. Also
AgnPr(2) = 0.(1 — 22)0,Pi(2) = =M\ Py(2),
which shows (by looking at the leading term) that
M =L0l+1), { € Zsy,

and the space of solutions of (38.1) with A = Ay is 2¢ + 1-dimensional
and is isomorphic to Ly, as an SO(3)-module.

Consider now the vector Y, € Ly, of any integer weight —¢ < m < /.
We will be interested in these vectors up to scaling. We have

Y7 (9,0) = €™ Py (cos ¢),

where P;" are certain functions. These functions are called spherical
harmonics. Moreover, it follows from representation theory of SO(3)
that Y™ are trigonometric polynomials which are even for even m and
odd for odd m (check it!), so P;"(z) are polynomials in z when m is
even and are of the form (1 — 2%)/2 times a polynomial in z when m
is odd.

Let us calculate the functions P;". Since they are eigenfunctions
of the spherical Laplacian, we obtain that P;" satisfy the Legendre
differential equation

m2

1 — 22

Exercise 38.1. Show that this equation has a unique up to scaling
continuous solution on [—1, 1] when —¢ < m < ¢ and m is an integer,
given by the formula

P (2) = (1= 22200 (1 = 2)".

0.(1 — 2%0.P —

P+l +1)P=0.

These functions are called associated Legendre polynomials (even
though they are not quite polynomials when m is odd).

Now we can return to equation (38.2). It now has the form
(38.3) 1)+ 27(r) + (2 = T 1 2B) f(r) = 0.

r r2
To simplify this equation, write

f(r) =re"wh(%),
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where n can be chosen at our convenience. Then for h we get the
equation

ph"(p) + (20+2 = p)h/(p) + (n — € — 1+ 1(1 + 2En° )p)h(p) =0.

We see that the equation simplifies when n = \/7 ie, B =—

2F’
let us make this choice. Then we have
ph"(p) + (2042 — p)h'(p) + (n — £ — 1)h(p) = 0,

which is the generalized Laguerre equation. Moreover, we have
||%]|? < oo, which translates to

(38.4) / P20 () 2dp < 0o
0

(the factor p* comes from the Jacobian of the spherical coordinates).

How do solutions of the generalized Laguerre equation behave at
p = 07 Let us look for a solution of the form p°(1 + o(1)). The
characteristic equation for s then has the form

s(s+20+1)=0,

which gives s = 0 or s = —2¢ — 1. Thus, for ¢ > 1 the solution
p~ 2711 4 0(1)) does not satisfy (38.4), so we are left with a unique
solution h,(p) which is regular at p = 0 and h,(0) = 1. On the other
hand, if ¢ = 0, the solution p~!(1+0(1)), even though it satisfies (38.4),

gives rise to a rotationally invariant function 1 ~ % as r — 0, so we

don’t get Hvy = E1), but rather get Hiy = FEv + Cdy, where dg is
the delta function concentrated at zero. So ¢ does not really satisfy
the stationary Schrodinger equation as a distribution and has to be
discarded, leaving us, as before, with the unique solution h,(p) such
that h,(0) =1

Using the power series method, we obtain

e}

Z (14+¢—n). (k+€—n)p_k
(20+2)...(20+1+4Fk) kI

k=0

It is easy to see that this series converges for all p and

i 108 hn(p)
p—+00 P

=1

unless the series terminates, which happens iff n — ¢ — 1 is a non-

negative integer. (To check the latter show that the Taylor coefficients

ay of h, are bounded below by k+N for some N). So it fails (38.4)
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unless n — ¢ — 1 € Z>y. In this case,
n—~—0—1
(1+0—n)...(k+£€—n)p* i1
h,(p) = Po ot
2 Z (20+2)...(20+14+k) K nt-1(P);

k=0
the n — ¢ — 1-th generalized Laguerre polynomial with parameter
a =20+ 1, a polynomial of degree n — ¢ — 1. Namely, the generalized

Laguerre polynomials L% are defined by the formula
N

L5 (p) == 3 (~1)

k=0

N N(N—k+1)pF
(a+1)..(a+k)k

Thus we obtain the following theorem.

Theorem 38.2. The bound states of the hydrogen atom, up to scaling,
are

Unem (1, 6,0) = r'e™n LI, ()Y, ),
where Y™ (0, ¢) = ™ P/*(¢) are spherical harmonics, where n € Zy,
¢ an integer between 0 and n — 1, and m is an integer between ¢ and
—(. The energy of the state Vnem, is £, = —5

T on2-
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