
38. The hydrogen atom, I

38.1. The Schrödinger equation. Let us now apply our knowledge
of non-abelian harmonic analysis to solve a basic problem in quantum
mechanics – describe the dynamics of the hydrogen atom.

The mechanics of the hydrogen atom is determined by motion of
a charged quantum particle (electron) in a rotationally invariant at-
tracting electric field. The potential of such a field is −1

r
, where

r2 = x2 + y2 + z2 (since this theory does not have nontrivial dimen-
sionless quantities, we may choose the units of measurement so that all
constants are equal to 1). Thus, the wave function ψ(x, y, z, t) for our
particle obeys the Schrödinger equation

i∂tψ = Hψ,

where H is the quantum Hamiltonian

H := −1

2
∆− 1

r
,

and ∆ = ∂2
x +∂2

y +∂2
z is the Laplace operator. Recall also that for each

t, the function ψ(−,−,−, t) is in L2(R3) and ||ψ|| = 1. The problem is
to solve this equation given the initial value ψ(x, y, z, 0).19

The Schrödinger equation can be solved by separation of variables
as follows. Suppose we have an orthonormal basis ψN of L2(R3) such
that HψN = ENψN . Then if

ψ(x, y, z, 0) =
∑
N

cNψN(x, y, z)

(i.e., cN = (ψ, ψN)) then

ψ(x, y, z, t) =
∑
N

cNe
−iEN tψN(x, y, z),

So our job is to find such basis ψN , i.e., diagonalize the self-adjoint
operator H.

Note that the operator H is unbounded and defined only on a dense
subspace of L2(R), and although it is symmetric ((Hψ, η) = (ψ,Hη)
for compactly supported functions), it is very nontrivial to say what
precisely it means that H is self-adjoint. Also, this operator turns out
to have both discrete and continuous spectrum, which means that there
is actually no basis with the desired properties – eigenfunctions of H
which lie in L2(R3) span a proper closed subspace of this Hilbert space.
However, this will not be a problem for our calculation.

19Recall that ψ determines the probability p(U, t) to find the electron in a region
U ⊂ R3 at a time t, which is given by the formula p(U, t) =

∫
U
|ψ(x, y, z, t)|2dxdydz.
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38.2. Bound states. We first focus on bound states, i.e., solutions
of the stationary Schrödinger equation

Hψ = Eψ

which belong to L2(R3) and thus decay at infinity in the sense of L2-
norm (this is the situation when the electron does not have enough
energy to escape from the nucleus, i.e., it is “bound” to it and thus un-
likely to be found far from the origin, which explains the terminology).
In particular, such eigenfunctions must have negative energy, E < 0.
To do so, let us utilize the rotational symmetry and write this equation
in spherical coordinates. For this we just need to write the Laplacian
∆ in spherical coordinates. Let us write r = ru, where u ∈ S2 (i.e.,
|u| = 1). We have

∆ = ∆r + 1
r2

∆sph

where
∆sph = 1

sin2 φ
∂2
θ + 1

sinφ
∂φ sinφ∂φ

is a differential operator on S2 (the spherical Laplacian, or the
Laplace-Beltrami operator) and

∆r = ∂2
r + 2

r
∂r

is the radial part of ∆ (check it!). So our equation looks like

∂2
rψ + 2

r
∂rψ + 2

r
ψ + 1

r2
∆sphψ = −2Eψ.

This equation can be solved by again applying separation of variables.
Namely, we look for solutions in the form

ψ(r,u) = f(r)ξ(u),

where

(38.1) ∆sphξ + λξ = 0.

Then we obtain the following equation for f :

(38.2) f ′′(r) + 2
r
f ′(r) + (2

r
− λ

r2
+ 2E)f(r) = 0.

So now we have to solve equation (38.1) and in particular determine
which values of λ occur.

To this end, recall that the operator ∆sph is rotationally invariant,
so it preserves the space L2

alg(S2) of functions on S2 belonging to fi-
nite dimensional representations of SO(3). Moreover, it preserves the
decomposition L2

alg(S2) = ⊕`≥0L2` of this space into irreducible repre-
sentations of SO(3) (Exercise 35.7(ii)), and on each L2` it acts by a
certain scalar −λ`. To compute this scalar, consider the vector Y 0

` in
L2` of weight zero. This vector is invariant under SO(2) changing θ,
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so it depends only on φ; in fact, it is a polynomial of degree ` in cosφ:
Y 0
` = P`(cosφ). Also orthogonality of the decomposition implies that∫ 1

−1

Pk(z)Pn(z)dz = 0, k 6= n.

This means that Pn are the Legendre polynomials. Also

∆sphP`(z) = ∂z(1− z2)∂zP`(z) = −λ`P`(z),

which shows (by looking at the leading term) that

λ` = `(`+ 1), ` ∈ Z≥0,

and the space of solutions of (38.1) with λ = λ` is 2` + 1-dimensional
and is isomorphic to L2` as an SO(3)-module.

Consider now the vector Y m
` ∈ L2` of any integer weight −` ≤ m ≤ `.

We will be interested in these vectors up to scaling. We have

Y m
` (φ, θ) = eimθPm

` (cosφ),

where Pm
` are certain functions. These functions are called spherical

harmonics. Moreover, it follows from representation theory of SO(3)
that Y m

` are trigonometric polynomials which are even for even m and
odd for odd m (check it!), so Pm

` (z) are polynomials in z when m is
even and are of the form (1 − z2)1/2 times a polynomial in z when m
is odd.

Let us calculate the functions Pm
` . Since they are eigenfunctions

of the spherical Laplacian, we obtain that Pm
` satisfy the Legendre

differential equation

∂z(1− z2)∂zP −
m2

1− z2
P + `(`+ 1)P = 0.

Exercise 38.1. Show that this equation has a unique up to scaling
continuous solution on [−1, 1] when −` ≤ m ≤ ` and m is an integer,
given by the formula

Pm
` (z) = (1− z2)m/2∂`+mz (1− z2)`.

These functions are called associated Legendre polynomials (even
though they are not quite polynomials when m is odd).

Now we can return to equation (38.2). It now has the form

(38.3) f ′′(r) + 2
r
f ′(r) + (2

r
− `(`+1)

r2
+ 2E)f(r) = 0.

To simplify this equation, write

f(r) = r`e−
r
nh(2r

n
),
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where n can be chosen at our convenience. Then for h we get the
equation

ρh′′(ρ) + (2`+ 2− ρ)h′(ρ) + (n− `− 1 + 1
4
(1 + 2En2)ρ)h(ρ) = 0.

We see that the equation simplifies when n = 1√
−2E

, i.e., E = − 1
2n2 , so

let us make this choice. Then we have

ρh′′(ρ) + (2`+ 2− ρ)h′(ρ) + (n− `− 1)h(ρ) = 0,

which is the generalized Laguerre equation. Moreover, we have
||ψ||2 <∞, which translates to

(38.4)

∫ ∞
0

ρ2`+2e−ρ|h(ρ)|2dρ <∞

(the factor ρ2 comes from the Jacobian of the spherical coordinates).
How do solutions of the generalized Laguerre equation behave at

ρ = 0? Let us look for a solution of the form ρs(1 + o(1)). The
characteristic equation for s then has the form

s(s+ 2`+ 1) = 0,

which gives s = 0 or s = −2` − 1. Thus, for ` ≥ 1 the solution
ρ−2`−1(1 + o(1)) does not satisfy (38.4), so we are left with a unique
solution hn(ρ) which is regular at ρ = 0 and hn(0) = 1. On the other
hand, if ` = 0, the solution ρ−1(1+o(1)), even though it satisfies (38.4),
gives rise to a rotationally invariant function ψ ∼ 1

r
as r → 0, so we

don’t get Hψ = Eψ, but rather get Hψ = Eψ + Cδ0, where δ0 is
the delta function concentrated at zero. So ψ does not really satisfy
the stationary Schrödinger equation as a distribution and has to be
discarded, leaving us, as before, with the unique solution hn(ρ) such
that hn(0) = 1.

Using the power series method, we obtain

hn(ρ) =
∞∑
k=0

(1 + `− n)...(k + `− n)

(2`+ 2)...(2`+ 1 + k)

ρk

k!
.

It is easy to see that this series converges for all ρ and

lim
ρ→+∞

log hn(ρ)

ρ
= 1

unless the series terminates, which happens iff n− `− 1 is a non-
negative integer. (To check the latter, show that the Taylor coefficients
ak of hn are bounded below by 1

(k+N)!
for some N). So it fails (38.4)
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unless n− `− 1 ∈ Z≥0. In this case,

hn(ρ) =
n−`−1∑
k=0

(1 + `− n)...(k + `− n)

(2`+ 2)...(2`+ 1 + k)

ρk

k!
= L2`+1

n−`−1(ρ),

the n− `− 1-th generalized Laguerre polynomial with parameter
α = 2`+ 1, a polynomial of degree n− `− 1. Namely, the generalized
Laguerre polynomials LαN are defined by the formula

LαN(ρ) :=
N∑
k=0

(−1)N
N...(N − k + 1)

(α + 1)...(α + k)

ρk

k!
.

Thus we obtain the following theorem.

Theorem 38.2. The bound states of the hydrogen atom, up to scaling,
are

ψn`m(r, φ, θ) = r`e−
r
nL2`+1

n−`−1(2r
n

)Y m
` (θ, φ),

where Y m
` (θ, φ) = eimθPm

` (φ) are spherical harmonics, where n ∈ Z>0,
` an integer between 0 and n − 1, and m is an integer between ` and
−`. The energy of the state ψn`m is En = − 1

2n2 .
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