37. Representations of compact topological groups

37.1. Existence of the Haar measure. One can generalize integra-
tion theory to arbitrary compact and even to locally compact topolog-
ical groups. For simplicity we will describe this generalization in the
case of compact topological groups with a countable base.

Namely, let X be a compact Hausdorff topological space with a
countable base. For compact Hausdorff spaces this is equivalent to
being metrizable. Let C'(X,R) be the space of continuous real-valued
functions on X. This is a real Banach space with norm

[If]l = max | f(2)[.

Recall that by the Riesz-Markov-Kakutani representation the-
orem, a finite Borel measure p on X is the same thing as a positive
continuous linear functional I : C(X,R) — R (i.e., such that I(f) >0
for f > 0), namely,

I(f) = /X Fd.

Moreover, u is a probability measure if and only if /(1) = 1, and any
it # 0 has positive volume and so can be normalized to be a probability
measure.

Now let G be a compact topological group with a countable base. It
acts on C'(G,R) by left and right translations, so acts on nonnegative
probability measures of G.

Theorem 37.1. (Haar, von Neumann) G admits a unique left-invariant
probability measure.

This measure is also automatically right-invariant (since it is unique)
and is called the Haar measure on G.

Remark 37.2. A unique up to scaling left-invariant regular Haar mea-
sure (albeit of infinite volume and not always right-invariant in the
non-compact case) exists more generally for any locally compact group
G (not necessarily having a countable base).'® We will not prove this
here, but we remark that Haar measures on Lie groups that we have
constructed using top differential forms are a special case of this.

Proof. Let g;,;i > 1 be a dense sequence in G (it exists since G has
a countable base, hence is separable, as you can pick a point in ev-
ery open set of this base). Let p; be a sequence of positive numbers

18Note that a finite Borel measure on a compact Hausdorff space with a countable
base is necessarily regular.
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such that >, p; = 1. To this data attach the averaging operator
A:C(G,R) — C(G,R) given by

(AN@) = 3 pif(ag).

This operator can be interpreted as follows: we have a Markov chain
with states being points of G and the transition probability from x
to xg; equal to p;, then (Af)(x) is the expected value of f after one
transition starting from x. It is clear that A is a left-invariant bounded
operator (of norm 1). Moreover, A acts by the identity on the line
L c C(G,R) of constant functions.

For f € C(G,R) denote by v(f) the distance from f to L, i.e.,

v(f) = 3(max f — min f).
Then v(Af) < v(f) unless f € L. Indeed, if f is not constant and

x € G, pick j such that f(zg;) < max f (exists since the sequence zg;
is dense in G), then

(Af)(x) = sz-f(fvgi) < (1 —pj)max f + p;f(zg;) < max f.

So max(Af) < max f. Similarly, min(Af) > min f.

Now fix f € C(G,R) and consider the sequence f, := A"f, n > 0.
This means that we let our Markov chain run for n steps. We know
that for finite Markov chains there is an asymptotic distribution, and
we’ll show that this is also the case in the situation at hand, giving rise
to a construction of the invariant integral.

Obviously, the sequence f,, is uniformly bounded by max |f|. Also
it is equicontinuous: for any ¢ > 0 there exists a neighborhood
1 € U C G such that for any x € G and u € U,

| fo(z) — fo(ux)| <e.

Indeed, it suffices to show that f is uniformly continuous, i.e., for any &
find U such that for all z € G,u € U we have |f(x)— f(uz)| < &; this U
will then work for all f,,. But this is guaranteed by Cantor’s theorem.
Namely, assume the contrary, that there is no such U. Then there are
two sequences x;,u; € G, u; — 1, with |f(z;) — f(wz;)| > €. The
sequence z; has a convergent subsequence, so we may assume without
loss of generality that z; — x € GG. Then taking the limit ¢ — oo, we
get that € < 0, a contradiction.

Therefore, by the Ascoli-Arzela theorem the sequence f, has a
convergent subsequence. Let us remind the proof of this theorem. We
construct subsequences f* of f, inductively by picking f* from f*!

so that f¥(g) converges (with fO = f£,), which can be done by the
200



boundedness assumption, and then set hp, := f77 = fum). Then hp,(g;)
converges, hence Cauchy, for all 7, which by equicontinuity implies
that h,,(z) is a Cauchy sequence in C'(G, R), hence converges to some
h € C(G,R).

We claim that h € L. Indeed, we have

V(fn(m)) > V(fn(m)Jrl) = V(Afn(m)) > V(fn(m+1))a

so taking the limit when m — oo, we get
v(h) > v(Ah) > v(h),

ie., v(Ah) = v(h). The assignment f — h is therefore a continuous
left-invariant positive linear functional I : C(G,R) — L = R, and
I(1) =1, as claimed.

Similarly, we may construct a right-invariant integral

I,:C(G,R) - L=R

with I,(1) = 1, and by construction for any left invariant integral J
we have J(f) = J(L.(f)). Thus for every left invariant integral J with
J(1) =1 we have J(f) = L.(f); in particular I(f) = L.(f). This shows
that I is unique, invariant on both sides and independent on the choice
of g;, pi, and hence that A" f — I(f) as n — oc. O

Example 37.3. A basic example of a compact topological group with
countable base which is, in general, not a Lie group, is a profinite
group. Namely, let G, Gs, ... be finite groups and ¢; : G;11 — G; be
surjective homomorphisms. Then the inverse limit G := liénGn is the
group consisting of sequences g; € G1, 92 € G, ... where ¢;(gi+1) = g;.
This group G has projections p, : G — G,, and a natural topology, for
which a base of neighborhoods of 1 consists of Ker(p,,). (This topology
can be defined by a bi-invariant mertic: d(a,b) = C™®P) where n(a,b)
is the first position at which a, b differ, and 0 < C' < 1). A sequence
a" converges to a in this topology if for each £, aj eventually stabilizes
to ag. It is easy to show that G is compact.

Profinite groups are ubiquitous in mathematics. For example, the
p-adic integers Z, for a prime p form a profinite group, namely the
inverse limit of Z/p"Z; in fact, it is a profinite ring. The multiplica-
tive group of this ring Z; is also a profinite group. One may also
consider non-abelian profinite groups GL,(Z,), On(Z,), Span(Z,), etc.
Finally, absolute Galois groups, such as Gal(Q/Q), are (very compli-
cated) profinite groups.

Note that infinite profinite groups are uncountable and totally dis-

connected, i.e., G° = 1.
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More generally, the inverse limit makes sense if GG; are compact Lie
groups. In this case G is equipped with the product topology, so also
compact (by Tychonoff’s theorem). For example, consider the sequence
of Lie groups G,, = R/Z and maps ¢; : G;+1 — G; given by ¢;(x) = px
for a prime p. We can realize G,, as R/p"Z, then ¢;(y) = y mod p'.
Let G := l'glGn. We have projections p, : G — G,,, and an element
a € Ker(p;) is a sequence of elements a,, € Z/p™ such that a,1 projects
to an, i.e., Ker(p;) = Z,. Thus we have a short exact sequence of
compact topological groups

0—+%Z,—-G—=R/Z—0

(non-split, as G is connected). In fact, we can obtain G as a quotient
(R X Z,)/Z where Z is embedded diagonally.

Corollary 37.4. Finite dimensional (continuous) representations of
a compact topological group G with a countable base are unitary and
completely reducible.

The proof is the same as for Lie groups, once we have the integration
theory, which we now do.

37.2. The Peter-Weyl theorem for compact topological groups.

Theorem 37.5. (i) (Peter-Weyl theorem) Let G be a compact topo-
logical group with a countable base. Then the set IrrepG is countable,
and

L2<G) - @Velrrep(G’)V ® v

as a G X G-module.
(i) The subspace L2,(G) = @vemrep)V ® V* is dense in C(G) in

alg
the supremum norm.

Again, the proof is analogous to Lie groups, using a delta-like se-
quence of continuous hat functions. Namely, we may take

hy(z) = ey max(5 — d(z,1),0),

where d is some metric defining the topology of G, and ¢y > 0 are
normalization constants such that [ hy(z)dz = 1.

Remark 37.6. If GG is profinite then finite dimensional representations
of G are just representations of G,, for various n:

IrrepG = U,>1IrrepG,,

(nested union).
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Corollary 37.7. Any compact topological group with countable base is
an inverse limit of a sequence of compact Lie groups ... = G1 — G,
where the maps G;1 — G; are surjective.

Proof. Let V1, V4, ... be the irreducible representations of G. Let K,,, =
Ker(py, ® ... ® py,,) C G, a closed normal subgroup. Then G/K,, C
UVi @ ...®V,) is a compact Lie group, and N,, K, = 1, so G is the
inverse limit of G/K,,. O

Exercise 37.8. (i) Let Q, = Z,[1/p] be the field of p-adic numbers,
i.e., the field of fractions of Z,. Construct the Haar measure |dz| on
the additive group of QQ, in which the volume of Z, is 1 using the Haar
measure on Z,.

(ii) Show that Q C Q, and Q, = Q + Z,, and use this to define an
embedding Q,/Z, — Q/Z. Show that Q/Z = &, primeQp/Zy.

(iii) Define the additive character ¢ : Q, — U(1) C C* by ¢(x) :=
exp(2miz), where T is the image of x in Q/Z. Use 9 to label the
characters (=irreducible representations) of Z, by Q,/Z,.

(iv) Let |z| be the p-adic norm of z € Q, (|z| = p™ if = € p"Z,
but = ¢ p"*'Z,, and |0] = 0). For which s € C is the function |z|* in
12(Z,)?

(v) The Peter-Weyl theorem in particular implies that any L? func-
tion f on a compact abelian group G with a countable base can be
expanded in a Fourier series

flo) =) ey,
J
where 1); are the characters of G. Write the Fourier expansion of |z|®
when it is in L*(Z,).
(vi) Show that % is a Haar measure on the multiplicative group

Q) = GL1(Qy). More generally, show that [dX]| := % is a
Haar measure on GL,(Q,) (where X = (z;;)).

(vii) Classify characters of Z.

(viii) Let S be the the space of locally constant functions on Q,
with compact support (i.e., linear combinations of indicator functions
of sets of the form a+p"Z,, a € Q,). Show that the Fourier transform

operator

/ V) F0)lds]
maps S to itself, and (F?f) f(—a:) Show that F preserves
the integration pairing on S’ f@ |dx| and therefore

extends to a unitary operator LQ(Qp) — LQ(Qp)
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