
37. Representations of compact topological groups

37.1. Existence of the Haar measure. One can generalize integra-
tion theory to arbitrary compact and even to locally compact topolog-
ical groups. For simplicity we will describe this generalization in the
case of compact topological groups with a countable base.

Namely, let X be a compact Hausdorff topological space with a
countable base. For compact Hausdorff spaces this is equivalent to
being metrizable. Let C(X,R) be the space of continuous real-valued
functions on X. This is a real Banach space with norm

||f || = max
x∈X
|f(x)|.

Recall that by the Riesz-Markov-Kakutani representation the-
orem, a finite Borel measure µ on X is the same thing as a positive
continuous linear functional I : C(X,R)→ R (i.e., such that I(f) ≥ 0
for f ≥ 0), namely,

I(f) =

∫
X

fdµ.

Moreover, µ is a probability measure if and only if I(1) = 1, and any
µ 6= 0 has positive volume and so can be normalized to be a probability
measure.

Now let G be a compact topological group with a countable base. It
acts on C(G,R) by left and right translations, so acts on nonnegative
probability measures of G.

Theorem 37.1. (Haar, von Neumann) G admits a unique left-invariant
probability measure.

This measure is also automatically right-invariant (since it is unique)
and is called the Haar measure on G.

Remark 37.2. A unique up to scaling left-invariant regular Haar mea-
sure (albeit of infinite volume and not always right-invariant in the
non-compact case) exists more generally for any locally compact group
G (not necessarily having a countable base).18 We will not prove this
here, but we remark that Haar measures on Lie groups that we have
constructed using top differential forms are a special case of this.

Proof. Let gi, i ≥ 1 be a dense sequence in G (it exists since G has
a countable base, hence is separable, as you can pick a point in ev-
ery open set of this base). Let pi be a sequence of positive numbers

18Note that a finite Borel measure on a compact Hausdorff space with a countable
base is necessarily regular.
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such that
∑

i pi = 1. To this data attach the averaging operator
A : C(G,R)→ C(G,R) given by

(Af)(x) =
∑
i

pif(xgi).

This operator can be interpreted as follows: we have a Markov chain
with states being points of G and the transition probability from x
to xgi equal to pi, then (Af)(x) is the expected value of f after one
transition starting from x. It is clear that A is a left-invariant bounded
operator (of norm 1). Moreover, A acts by the identity on the line
L ⊂ C(G,R) of constant functions.

For f ∈ C(G,R) denote by ν(f) the distance from f to L, i.e.,

ν(f) = 1
2
(max f −min f).

Then ν(Af) < ν(f) unless f ∈ L. Indeed, if f is not constant and
x ∈ G, pick j such that f(xgj) < max f (exists since the sequence xgi
is dense in G), then

(Af)(x) =
∑
i

pif(xgi) ≤ (1− pj) max f + pjf(xgj) < max f.

So max(Af) < max f . Similarly, min(Af) > min f .
Now fix f ∈ C(G,R) and consider the sequence fn := Anf , n ≥ 0.

This means that we let our Markov chain run for n steps. We know
that for finite Markov chains there is an asymptotic distribution, and
we’ll show that this is also the case in the situation at hand, giving rise
to a construction of the invariant integral.

Obviously, the sequence fn is uniformly bounded by max |f |. Also
it is equicontinuous: for any ε > 0 there exists a neighborhood
1 ∈ U ⊂ G such that for any x ∈ G and u ∈ U ,

|fn(x)− fn(ux)| < ε.

Indeed, it suffices to show that f is uniformly continuous, i.e., for any ε
find U such that for all x ∈ G, u ∈ U we have |f(x)−f(ux)| < ε; this U
will then work for all fn. But this is guaranteed by Cantor’s theorem.
Namely, assume the contrary, that there is no such U . Then there are
two sequences xi, ui ∈ G, ui → 1, with |f(xi) − f(uixi)| ≥ ε. The
sequence xi has a convergent subsequence, so we may assume without
loss of generality that xi → x ∈ G. Then taking the limit i → ∞, we
get that ε ≤ 0, a contradiction.

Therefore, by the Ascoli-Arzela theorem the sequence fn has a
convergent subsequence. Let us remind the proof of this theorem. We
construct subsequences fkn of fn inductively by picking fkn from fk−1

n

so that fkn(gk) converges (with f 0
n = fn), which can be done by the
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boundedness assumption, and then set hm := fmm = fn(m). Then hm(gi)
converges, hence Cauchy, for all i, which by equicontinuity implies
that hm(x) is a Cauchy sequence in C(G,R), hence converges to some
h ∈ C(G,R).

We claim that h ∈ L. Indeed, we have

ν(fn(m)) ≥ ν(fn(m)+1) = ν(Afn(m)) ≥ ν(fn(m+1)),

so taking the limit when m→∞, we get

ν(h) ≥ ν(Ah) ≥ ν(h),

i.e., ν(Ah) = ν(h). The assignment f 7→ h is therefore a continuous
left-invariant positive linear functional I : C(G,R) → L = R, and
I(1) = 1, as claimed.

Similarly, we may construct a right-invariant integral

I∗ : C(G,R)→ L = R

with I∗(1) = 1, and by construction for any left invariant integral J
we have J(f) = J(I∗(f)). Thus for every left invariant integral J with
J(1) = 1 we have J(f) = I∗(f); in particular I(f) = I∗(f). This shows
that I is unique, invariant on both sides and independent on the choice
of gi, pi, and hence that Anf → I(f) as n→∞. �

Example 37.3. A basic example of a compact topological group with
countable base which is, in general, not a Lie group, is a profinite
group. Namely, let G1, G2, ... be finite groups and φi : Gi+1 → Gi be
surjective homomorphisms. Then the inverse limit G := lim←−Gn is the

group consisting of sequences g1 ∈ G1, g2 ∈ G2, ... where φi(gi+1) = gi.
This group G has projections pn : G→ Gn and a natural topology, for
which a base of neighborhoods of 1 consists of Ker(pn). (This topology
can be defined by a bi-invariant mertic: d(a,b) = Cn(a,b), where n(a,b)
is the first position at which a,b differ, and 0 < C < 1). A sequence
an converges to a in this topology if for each k, ank eventually stabilizes
to ak. It is easy to show that G is compact.

Profinite groups are ubiquitous in mathematics. For example, the
p-adic integers Zp for a prime p form a profinite group, namely the
inverse limit of Z/pnZ; in fact, it is a profinite ring. The multiplica-
tive group of this ring Z×p is also a profinite group. One may also
consider non-abelian profinite groups GLn(Zp), On(Zp), Sp2n(Zp), etc.

Finally, absolute Galois groups, such as Gal(Q/Q), are (very compli-
cated) profinite groups.

Note that infinite profinite groups are uncountable and totally dis-
connected, i.e., G◦ = 1.
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More generally, the inverse limit makes sense if Gi are compact Lie
groups. In this case G is equipped with the product topology, so also
compact (by Tychonoff’s theorem). For example, consider the sequence
of Lie groups Gn = R/Z and maps φi : Gi+1 → Gi given by φi(x) = px
for a prime p. We can realize Gn as R/pnZ, then φi(y) = y mod pi.
Let G := lim←−Gn. We have projections pn : G → Gn, and an element

a ∈ Ker(p1) is a sequence of elements an ∈ Z/pn such that an+1 projects
to an, i.e., Ker(p1) = Zp. Thus we have a short exact sequence of
compact topological groups

0→ Zp → G→ R/Z→ 0

(non-split, as G is connected). In fact, we can obtain G as a quotient
(R× Zp)/Z where Z is embedded diagonally.

Corollary 37.4. Finite dimensional (continuous) representations of
a compact topological group G with a countable base are unitary and
completely reducible.

The proof is the same as for Lie groups, once we have the integration
theory, which we now do.

37.2. The Peter-Weyl theorem for compact topological groups.

Theorem 37.5. (i) (Peter-Weyl theorem) Let G be a compact topo-
logical group with a countable base. Then the set IrrepG is countable,
and

L2(G) = ⊕̂V ∈Irrep(G)V ⊗ V ∗

as a G×G-module.
(ii) The subspace L2

alg(G) = ⊕V ∈Irrep(G)V ⊗ V ∗ is dense in C(G) in
the supremum norm.

Again, the proof is analogous to Lie groups, using a delta-like se-
quence of continuous hat functions. Namely, we may take

hN(x) = cN max( 1
N
− d(x, 1), 0),

where d is some metric defining the topology of G, and cN > 0 are
normalization constants such that

∫
G
hN(x)dx = 1.

Remark 37.6. If G is profinite then finite dimensional representations
of G are just representations of Gn for various n:

IrrepG = ∪n≥1IrrepGn

(nested union).
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Corollary 37.7. Any compact topological group with countable base is
an inverse limit of a sequence of compact Lie groups ... → G1 → G0,
where the maps Gi+1 → Gi are surjective.

Proof. Let V1, V2, ... be the irreducible representations of G. Let Km =
Ker(ρV1 ⊕ ... ⊕ ρVm) ⊂ G, a closed normal subgroup. Then G/Km ⊂
U(V1 ⊕ ... ⊕ Vn) is a compact Lie group, and ∩mKm = 1, so G is the
inverse limit of G/Km. �

Exercise 37.8. (i) Let Qp = Zp[1/p] be the field of p-adic numbers,
i.e., the field of fractions of Zp. Construct the Haar measure |dx| on
the additive group of Qp in which the volume of Zp is 1 using the Haar
measure on Zp.

(ii) Show that Q ⊂ Qp and Qp = Q + Zp, and use this to define an
embedding Qp/Zp → Q/Z. Show that Q/Z = ⊕p primeQp/Zp.

(iii) Define the additive character ψ : Qp → U(1) ⊂ C× by ψ(x) :=
exp(2πix), where x is the image of x in Q/Z. Use ψ to label the
characters (=irreducible representations) of Zp by Qp/Zp.

(iv) Let |x| be the p-adic norm of x ∈ Qp (|x| = p−n if x ∈ pnZp
but x /∈ pn+1Zp, and |0| = 0). For which s ∈ C is the function |x|s in
L2(Zp)?

(v) The Peter-Weyl theorem in particular implies that any L2 func-
tion f on a compact abelian group G with a countable base can be
expanded in a Fourier series

f(x) =
∑
j

cjψj(x),

where ψj are the characters of G. Write the Fourier expansion of |x|s
when it is in L2(Zp).

(vi) Show that |dx||x| is a Haar measure on the multiplicative group

Q×p = GL1(Qp). More generally, show that |dX| :=
∏

1≤i,j≤n |dxij |
|det(X)|n is a

Haar measure on GLn(Qp) (where X = (xij)).
(vii) Classify characters of Z×p .
(viii) Let S be the the space of locally constant functions on Qp

with compact support (i.e., linear combinations of indicator functions
of sets of the form a+ pnZp, a ∈ Qp). Show that the Fourier transform
operator

F(f) =

∫
Qp
ψ(xy)f(y)|dy|

maps S to itself, and (F2f)(x) = f(−x). Show that F preserves

the integration pairing on S, (f, g) =
∫
Qp f(x)g(x)|dx|, and therefore

extends to a unitary operator L2(Qp)→ L2(Qp).
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