
35. Representations of compact Lie groups

35.1. Unitary representations. Now we can extend to compact groups
the result that representations of finite groups are unitary. Namely, let
V be a finite dimensional (continuous) complex representation of a
compact Lie group G.

Proposition 35.1. V admits a G-invariant unitary structure.

Proof. Fix a positive Hermitian form B on V and define a new Her-
mitian form on V by

Bav(v, w) =

∫
G

B(ρV (g)v, ρV (g)w)dg.

This form is well defined since G is compact and is G-invariant by
construction (since the measure dg is invariant). Also Bav(v, v) > 0 for
v 6= 0 since B(w,w) > 0 for any w 6= 0. �

Corollary 35.2. Every finite dimensional representation V of a com-
pact Lie group G is completely reducible.

Proof. Let W ⊂ V be a subrepresentation and B be an invariant posi-
tive Hermitian form on V . Let W⊥ ⊂ V be the orthogonal complement
of W under B. Then V = W ⊕W⊥, which implies the statement. �

In particular, this applies to the special unitary group SU(n). Recall
that SU(n)/SU(n − 1) = S2n−1, which implies that SU(n) is simply
connected. Thus (smooth) representations of SU(n) is the same thing
as representations of the Lie algebra su(n) or its complexification sln.
Thus we get a new, analytic proof that finite dimensional representa-
tions of sln are completely reducible (this is called Weyl’s unitary
trick). In fact, we will see that complete reducibility of finite dimen-
sional representations of all semisimple Lie algebras can be proved in
this way.

35.2. Matrix coefficients. Let V be a finite dimensional continuous
complex representation of a Lie group G. A matrix coefficient of
V is a function G → C of the form (f, ρV (g)v) for some v ∈ V and
f ∈ V ∗. Obviously, such a function is continuous.

Proposition 35.3. Matrix coefficients are smooth.

Proof. Let us say that v ∈ V is smooth if the function f(ρV (g)v) is
smooth for any f ∈ V ∗; it is clear that such vectors form a subspace
Vsm of V . Our job is to show that, in fact, Vsm = V . To this end let
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us first construct some smooth vectors. For this let φ : G → C be a
smooth function with compact support, and let

w = w(φ, v) :=

∫
G

φ(g)ρV (g)vdg,

where dg is a left-invariant Haar measure on G and v ∈ V . We claim
that w is a smooth vector. Indeed,

f(ρV (h)w) = f

(
ρV (h)

∫
G

φ(g)ρV (g)vdg

)
=∫

G

f(φ(g)ρV (hg)v)dg =

∫
G

f(φ(h−1g)ρV (g)v)dg,

and this is manifestly smooth in h (we can differentiate indefinitely
under the integral sign).

Define a delta-like sequence (or a Dirac sequence) around a
point x0 ∈ M on a manifold M with a smooth measure dx to be a
sequence of continuous functions φn on M such that for every neigh-
borhood U of x0 the supports of almost all φn are contained in U ,
and

∫
M
φn(x)dx = 1. The “hat” function construction implies that

delta-like sequences exist and can be chosen non-negative and smooth.
Namely, we can pick a sequence of non-negative smooth functions sat-
isfying the first condition and then normalize it to satisfy the second
one.

Now let φn be a smooth delta-like sequence around 1 on G with left-
invariant Haar measure. Let wn := w(φn, v). It is obvious that wn → v
as n → ∞. Thus Vsm is dense in V . Since V is finite dimensional, it
follows that Vsm = V , as claimed. �

Now let V be an irreducible representation of a compact Lie group G.
As shown above, it has an invariant positive Hermitian inner product,
which we’ll denote by (, ). Moreover, this product is unique up to
scaling. Pick an orthonormal basis v1, ..., vn of V under this inner
product, and let v∗1, ..., v

∗
n be the dual basis of V ∗. Now consider the

matrix coefficients of V in this basis:

ψV,ij(g) := v∗j (ρV (g)vi) = (ρV (g)vi, vj).

Note that these functions are independent on the normalization of (, ).
Suppose now that we also have another such representation W with

orthonormal basis wi.

Theorem 35.4. (Orthogonality of matrix coefficients) We have∫
G

ψV,ij(g)ψW,kl(g)dg = 0
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if V is not isomorphic to W . Also∫
G

ψV,ij(g)ψV,kl(g)dg =
δikδjl
dimV

.

Proof. We have∫
G

ψV,ij(g)ψW,kl(g)dg =

∫
G

((ρV (g)⊗ ρW (g))(vi ⊗ wk), vj ⊗ wl)dg =

(P (vi ⊗ wk), vj ⊗ wl)
where

P :=

∫
G

ρV (g)⊗ ρW (g)dg =

∫
G

ρV⊗W (g)dg.

Since W is unitary, W ∼= W ∗, so we have

P =

∫
G

ρV⊗W ∗(g)dg : V ⊗W ∗ → V ⊗W ∗.

By construction, Im(P ) ⊂ (V ⊗W ∗)G, which is zero if V � W . Thus
we have proved the proposition in this case.

It remains to consider the case V = W . In this case V ⊗ W ∗ =
V ⊗ V ∗ = V ⊗ V , and the only invariant in this space up to scaling
is u :=

∑
k vk ⊗ vk. Also P is conjugation invariant under G, so by

decomposing V ⊗ V ∗ into irreducibles we see that it is the orthogonal
projector to Cu:

Px =
(x,u)

(u,u)
u =

(x,u)u

dimV
.

In particular,

(P (vi ⊗ wk), vj ⊗ wl) =
δikδjl
dimV

,

as claimed. �

35.3. The Peter-Weyl theorem. Thus we see that the functions
ψV,ij for various V, i, j form an orthogonal system in the Hilbert space
L2(G) = L2(G, dg) of measurable functions f : G→ C such that

||f ||2 =

∫
G

|f(g)|2dg <∞.

A fundamental result about compact Lie groups is that this system is,
in fact, complete:

Theorem 35.5. (Peter-Weyl theorem) The functions ψV,ij form an
orthogonal basis of L2(G).

Theorem 35.5 will be proved in Section 36.
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35.4. An alternative formulation of the Peter-Weyl theorem.
Given a finite dimensional irreducible representation V of G, consider
the space HomG(V, L2(G)) of G-homomorphisms for the action of G on
L2(G) by left translations. We have an obvious inclusion

ιV : V ∗ ↪→ HomG(V, L2(G))

via the matrix coefficient map f 7→ [v 7→ (ρV ∗(−)f)(v)]. Clearly, this is
a map of G-modules, where now G acts on L2(G) by right translations.
We claim that ιV is surjective, i.e., an isomorphism. For this, note that
an element φ ∈ HomG(V, L2(G)) can be viewed a left G-equivariant
L2-function φ : G → V ∗, i.e. such that for almost all g ∈ G (with
respect to the Haar measure) we have

(35.1) φ(x) = ρV ∗(xg
−1)φ(g)

for almost all x ∈ G. But then by changing φ on a set of measure zero
if needed, we may replace it by a continuous function (the right hand
side of (35.1)). Then, setting g = 1, we have φ(x) = ρV ∗(x)φ(1), as
claimed.

Thus we have a natural inclusion

ξ : ⊕V ∈Irrep(G)V ⊗ V ∗ ∼= ⊕V ∈Irrep(G)V ⊗ HomG(V, L2(G)) ↪→ L2(G),

which is actually an embedding of G×G-modules, and we will denote
the image of ξ by L2

alg(G) (the “algebraic part” of L2(G)). Note that

if ψ ∈ L2(G) generates a finite dimensional representation V under
the action of G by left translations then ψ belongs to the image of a
homomorphism V → L2(G), hence to L2

alg(G). Thus L2
alg(G) is just

the subspace of ψ ∈ L2(G) which generate a finite dimensional rep-
resentation under left translations by G. We also see that it may be
equivalently characterized as the subspace of ψ ∈ L2(G) which generate
a finite dimensional representation under right translations by G.

Theorem 35.6. (Peter-Weyl theorem, alternative formulation) The
space L2

alg(G) is dense in L2(G). In other words, the map ξ gives rise
to an isomorphism

⊕̂V ∈Irrep(G)V ⊗ V ∗ → L2(G)

where the first copy of G acts on V and the second one on V ∗ and the
hat denotes the Hilbert space completion of the direct sum.

Note that this is again an instance of the double centralizer prop-
erty! Namely, it expresses representation-theoretically the fact that the
centralizer of the group of left translations on G is the group of right
translations on G, and vice versa.
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For example, let G = S1. Then the irreducible representations of
G are the characters ψn(θ) = einθ. So the Peter-Weyl theorem in this
case says that {einθ} is an orthonormal basis of L2(S1) with norm

||f ||2 :=
1

2π

∫ 2π

0

|f(θ)|2dθ,

which is the starting point for Fourier analysis. So the Peter-Weyl the-
orem is similarly a starting point for nonabelian Fourier (or har-
monic) analysis.

Exercise 35.7. Let G be a compact Lie group and H ⊂ G a closed
subgroup. Then we have a compact homogeneous space G/H and the
Haar measure on G defines a probability measure on G/H. So we can
define the infinite dimensional unitary representation L2(G/H) of G.

(i) Show that have a decomposition

L2(G/H) = ⊕̂V ∈IrrepGNH(V )V,

where NH(V ) = dimV H , the dimension of the space of H-invariants of
V .

(ii) Let G = SO(3), so the irreducible representations are L2m for
m ≥ 0. Thus

L2(G/H) = ⊕̂m≥0NH(m)L2m.

Compute this decomposition (i.e., the numbers NH(m)) for H = Z/nZ
acting by rotations around an axis by angles 2πk/n (rotations of a
regular n-gon).

(iii) Do the same for the dihedral group H = Dn of symmetries of the
regular n-gon (where reflections in the plane are realized as rotations
around a line in this plane).

(iv) Do the same for the groups H = SO(2) and H = O(2) of
rotations and symmetries of the circle.

(v) Do the same for H being the group of symmetries of a platonic
solid (tetrahedron, cube, icosahedron).

It may be more convenient to give NV (m) in the form of the gener-
ating function

∑
mNV (m)tm.

Exercise 35.8. Let G = GLn(C). A regular algebraic function on
G is a polynomial of Xij and det(X)−1 for X ∈ G. Denote by O(G)
the algebra of regular algebraic functions on G.

(i) Show that G×G acts on O(G) by left and right multiplication.
(ii) (Algebraic Peter-Weyl theorem) Show that as a G× G-module,

we have

O(G) = ⊕V ∈Irrep(G)V ⊗ V ∗.
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Hint. Compute HomG(V,O(G)) where G acts on O(G) by right trans-
lations. For this, interpret elements of this space as equivariant func-
tions G→ V ∗ and show that such functions are automatically regular
algebraic.

(iii) Generalize (i) and (ii) to orthogonal and symplectic groups.

35.5. Orthogonality and completeness of characters.

Corollary 35.9. Let χV (g) = Tr(ρV (g)) be the character of V . Then
{χV (g), V ∈ IrrepG} is an orthonormal basis of L2(G)G, the space of
conjugation-invariant functions in L2(G) (i.e., such that f(gxg−1) =
f(x)).

Proof. We have χV (g) =
∑

i ψV,ii(g), so by orthogonality of matrix
coefficients χV are orthonormal in L2(G)G. So it remains to show that
they are complete. For this observe that L2

alg(G)G = ξ(⊕V (V ⊗V ∗)G) =

⊕VCχV . Thus our job is to show that L2
alg(G)G is dense in L2(G)G. To

this end, for ψ ∈ L2(G)G fix a sequence ψn ∈ L2
alg(G) such that ψn → ψ

as n→∞. Such a sequence exists by the Peter-Weyl theorem. Let

ψav
n (x) =

∫
G

ψn(gxg−1)dg.

It is easy to see that ψav
n ∈ L2

alg(G). Also ||ψav
n − ψ|| ≤ ||ψn − ψ|| → 0,

n→∞, as claimed. �
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