
33. Differential forms, partitions of unity

Now we want to develop an integration theory on Lie groups. First
we need to recall the basics about integration on manifolds.

33.1. Locally compact spaces. A Hausdorff topological space X is
called locally compact if every point has a neighborhood whose clo-
sure is compact. For example, Rn and thus every manifold is locally
compact.

Lemma 33.1. If X is a locally compact topological space with a count-
able base then it can be represented as a nested union of compact sub-
sets: X = ∪n∈NKn, Ki ⊂ Ki+1, such that every point x ∈ X has a
neighborhood Ux contained in some Kn.

Proof. For each x ∈ X fix a neighborhood Ux of x such that Ux is
compact. By Lemma 1.4 the open cover {Ux} of X has a countable
subcover {Wi, i ∈ N}. Then the sets Kn = ∪ni=0Wi form a desired
nested sequence of compact subsets of X. �

An open cover of a topological space X is said to be locally finite
if every point of X has a neighborhood intersecting only finitely many
members of this cover.

Lemma 33.2. Let X be a locally compact topological space with a
countable base. Then every base of X has a countable, locally finite
subcover.

Proof. Use Lemma 33.1 to write X as a nested union of compact sets
Kn such that every point is contained in some Kn together with its
neighborhood. We construct the required subcover inductively as fol-
lows. Choose finitely many sets U1, ..., UN0 of the base covering K0, and
remove all other members of the base which meet K0. The remaining
collection of open sets is no longer a base but still an open cover of
X. So add finitely many new sets UN0+1, ..., UN1 from this cover (all
necessarily disjoint from K0) to our list so that it now covers K1, and
remove all other members that meet K1, and so on. The remaining
sequence U1, U2, ... has only finitely many members which meets every
Kn, so every point of X has a neighborhood meeting only finitely many
Ui. �

33.2. Reminder on differential forms. Let M be a real smooth
n-dimensional manifold. Recall that a differential k-form on M is a
smooth section of the vector bundle ∧iT ∗M , i.e., a skew-symmetric
(n, 0)-tensor field (see Subsection 5.3). Thus, for example, a 1-form is
a section of T ∗M . If x1, ..., xn are local coordinates on M near some
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point p ∈M then the differentials dx1, ..., dxn form a basis in fibers of
T ∗M near this point, so a general 1-form in these coordinates has the
form

ω =
n∑
i=1

fi(x1, ..., xn)dxi.

If we change the coordinates x1, ..., xn to y1, ..., yn then xi are smooth
functions of y1, ..., yn and in the new coordinates ω looks like

ω =
n∑

i,j=1

fi(x1, ..., xn)
∂xi
∂yj

dyj.

Similarly, a differential k-form in the coordinates xi looks like

ω =
∑

1≤i1<...<ik≤n

fi1,...,ik(x1, ..., xn)dxi1 ∧ ... ∧ dxik

where fi1,...,ik are smooth functions, and in the coordinates yj it looks
like

ω =
∑

1≤i1<...<ik≤n

∑
1≤j1<...<jk≤n

fi1,...,ik(x1, ..., xn) det

(
∂xir
∂yjs

)
dyj1∧...∧dyjk .

The space of differential k-forms on M is denoted Ωk(M). For instance,
Ω0(M) = C∞(M) and Ωk(M) = 0 for k > n. Consider now the
extremal case k = n. The bundle ∧nT ∗M is a line bundle (a vector
bundle of rank 1), so locally any differential n-form in coordinates xi
has the form

ω = f(x1, ..., xn)dx1 ∧ ... ∧ dxn,
which in coordinates yj takes the form

ω = f(x1, ..., xn) det

(
∂xi
∂yj

)
dy1 ∧ ... ∧ dyn.

We have a canonical differentiation operator d : Ω0(M) → Ω1(M)
given in local coordinates by

df =
n∑
i=1

∂f

∂xi
dxi.

It is easy to check that this operator does not depend on the choice of
coordinates (this becomes obvious if you define it without coordinates,
df(v) = ∂vf for v ∈ TpM). Also Ω•(M) := ⊕nk=0Ωk(M) is a graded
algebra under wedge product, and d naturally extends to a degree 1
derivation d : Ω•(M)→ Ω•(M) defined in coordinates by

d(fdxi1 ∧ ... ∧ dxik) = df ∧ dxi1 ∧ ... ∧ dxik .
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Namely, this is independent on choices and gives rise to a derivation in
the “graded” sense:

d(a ∧ b) = da ∧ b+ (−1)deg aa ∧ db.
A form ω is closed if dω = 0 and exact if ω = dη for some η. It is
easy to check that d2 = 0, so any exact form is closed. However, not
every closed form is exact: on the circle S1 = R/Z the form dx is closed
but the function x is defined only up to adding integers, so dx is not
exact. The space Ωk

closed(M)/Ωk
exact(M) is called the k-th de Rham

cohomology of M , denoted Hk(M).
If f : M → N is a differentiable mapping then for a differential

form ω ∈ Ωk(N) we can define the pullback f ∗ω ∈ Ωk(N), given by
(f ∗ω)(v1, , , .vk) = ω(f∗v1, ..., f∗vk) for v1, ..., vk ∈ TpM . This operation
commutes with wedge product and the differential, and (f◦g)∗ = g∗◦f ∗.

33.3. Partitions of unity. Let M be a manifold and {Ui, i ∈ I} be
an open cover of M .

Definition 33.3. A smooth partition of unity subordinate to {Ui, i ∈ I}
is a collection {fs, s ∈ S} of smooth nonnegative functions on M such
that

(i) for all s the support of fs is contained in Ui for some i = i(s);
(ii) Any y ∈ M has a neighborhood in which all but finitely many

fs are zero;
(iii)

∑
s fs = 1.

Note that the sum in (iii) makes sense because of condition (ii).
Note also that given any partition of unity {fs} subordinate to {Ui},

we can define

Fi :=
∑

s:i(s)=i

fs,

and this is a new partition of unity subordinate to the same cover now
labeled by the set I, with the support of Fi contained in Ui.

Finally, note that in every partition of unity on M , the set of s such
that fs is not identically zero is countable, and moreover finite if M
is compact. This follows from the fact that by Lemma 1.4, any open
cover of a manifold M has a countable subcover, and moreover a finite
one if M is compact (applied to the neighborhoods from condition (ii)).

Proposition 33.4. Any open cover {Ui, i ∈ I} of a manifold M admits
a partition of unity subordinate to this cover.

Proof. Define a function h : [0,∞] → R given by h(t) = 0 for t ≥ 1
and h(t) = exp( 1

t−1
) for t < 1. It is easy to check that h is smooth.
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Thus we can define the smooth hat function H(x) := h(|x|2) on Rn,

supported on the closed unit ball B(0, 1).

If φ : B(0, 1) → M is a C∞-map which is a diffeomorphism onto
the image, we will say that the image of φ is a closed ball in M .
Thus given a closed ball B on M (equipped with a diffeomorphism

φ : B(0, 1) → B), we have a hat function HB(y) := H(φ−1(y)) on B,
which we extend by zero to a smooth function on M whose support is
B and which is strictly positive in its interior B ⊂ B.

Now let {Bs, s ∈ J} be the collection of all closed balls in M such
that their interiors Bs are contained in some Ui. Then {Bs, s ∈ J} is
clearly a base for M . Thus by Lemma 33.2, this base has a count-
able, locally finite subcover {Bs, s ∈ S}. Picking diffeomorphisms

φs : B(0, 1) → Bs, s ∈ S, we can define the smooth function F (y) :=∑
s∈S HBs(y), which is strictly positive on M since Bs cover M (this

makes sense by the local finiteness). Now define the smooth functions

fs(y) :=
HBs (y)

F (y)
. This collection is a partition of unity subordinate to

the cover {Ui}, as desired. �
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