
32. Maximal root, exponents, Coxeter numbers, dual
representations

32.1. Duals of irreducible representations. Now let g be any com-
plex semisimple Lie algebra. How to compute the dual of the irreducible
representation Lλ? It is clear that the highest weight of L∗λ equals −µ,
where µ is the lowest weight of Lλ, so we should compute the latter.
For this purpose, recall that the Weyl group W of g contains a unique
element w0 which maps dominant weights to antidominant weights,
i.e., maps positive roots to negative roots. This is the maximal ele-
ment, which is the unique element whose length is |R+|. For example,
if −1 ∈ W then clearly w0 = −1. It is easy to see that the lowest
weight of Lλ is w0λ.

Thus we get

Proposition 32.1. L∗λ = L−w0λ.

The map−w0 permutes fundamental (co)weights and simple (co)roots,
so it is induced by an automorphism of the Dynkin diagram of g. So if
g is simple and its Dynkin diagram has no nontrivial automorphisms,
we have w0 = −1, so −w0 = 1 and thus L∗λ = Lλ for all λ. This hap-
pens for A1, Bn, Cn, G2, F4, E7 and E8. In general, note that si and
hence the whole Weyl group W acts trivially on P/Q, which implies
that −w0 acts on P/Q by inversion. Thus we see that for An−1, n ≥ 3,
when P/Q = Z/n, the map −w0 is the flip of the chain. Another way
to see it is to note that L∗ω1

= V ∗ = ∧n−1V = Lωn−1 (as dimV = n).
For E6, P/Q = Z/3, so −w0 must exchange the two nonzero minuscule
weights and thus must also be the flip.

Exercise 32.2. (i) Show that for D2n+1 we have S∗+ = S− while for
D2n we have S∗+ = S+, S∗− = S−. (Hint: Show that in the first case
P/Q ∼= Z/4 while in the second case P/Q ∼= (Z/2)2.)

(ii) Show that the restriction of the spin representation S of so2n+1

to so2n is S+ ⊕ S−.
(iii) Show that there exist unique up to scaling nonzero Clifford

multiplication homomorphisms

V ⊗ S → S, V ⊗ S+ → S−, V ⊗ S− → S+.

(iv) Compute the decomposition of the tensor products

S ⊗ S∗, S+ ⊗ S∗+, S− ⊗ S∗−, S+ ⊗ S∗−
into irreducible representations.

Hint. In the odd dimensional case, use that Cl(V ) = 2S ⊗ S∗ as an
so(V )-module, that grCl(V ) = ∧V , and that representations of so(V )
are completely reducible.
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The even case is similar:

Cl(V ) = S+ ⊗ S∗+ ⊕ S− ⊗ S∗− ⊕ S− ⊗ S∗+ ⊕ S+ ⊗ S∗−.
If dimV = 2n and n is even, use that all representations of so(V ) are
selfdual to conclude that the last two summands are isomorphic. (If n
is odd, they will not be isomorphic).

Also in this case you need to pay attention to the middle exterior
power - it should split into two parts. Namely, if dimV = 2n then
on ∧nV we have two invariant bilinear forms: one symmetric coming
from the one on V , denoted B(ξ, η), and the other given by wedge
product ∧ : ∧nV × ∧nV → ∧2nV = C, which is symmetric for even
n and skew-symmetric for odd n. Since the wedge product form is
nondegenerate, there is a unique linear operator ∗ : ∧nV → ∧nV called
the Hodge *-operator such that B(ξ, η) = ξ ∧ ∗η. You should show
that ∗2 = 1 in the even case and ∗2 = −1 in the odd case (use an
orthonormal basis of V ). Thus we have an eigenspace decomposition
∧nV = ∧n+V ⊕ ∧n−V , into eigenspaces of ∗ with eigenvalues ±1 in the
even case (called selfdual and anti-selfdual forms respectively) and
±i in the odd case. You will see that these pieces are irreducible and
isomorphic to each other in the odd case but not in the even case,
and that one of them (which?) goes into S+ ⊗ S∗+ and the other into
S− ⊗ S∗−.

32.2. The maximal root. Let g be a complex simple Lie algebra
and θ be the maximal root of g, i.e., the highest weight of the adjoint
representation. For example, for g = sln the adjoint representation is
generated by the highest weight vector of V ⊗V ∗, where V = Cn is the
vector representation. Thus we have

θ = ω1 + ωn−1 = (2, 1, ..., 1, 0) = (1, 0, ..., 0,−1),

the sum of the highest weights of V and V ∗ (recall that weights for
sln are n-tuples of complex numbers modulo simultaneous translation
by the same number). Thus, θ is not fundamental. Similarly, for
g = sp2n, we have g = S2V where V is the vector representation, so
θ = 2ω1 is again not fundamental. Nevertheless, we have the following
proposition.

Proposition 32.3. For any simple Lie algebra g 6= sln, sp2n, θ is a
fundamental weight.

Proof. If g = soN , N ≥ 7 (i.e. of type B or D but not A or C) then
g = ∧2V = Lω2 , so θ = ω2.

If g = G2, α1 = α is the long simple root and α2 = β is the short
one, then we easily see that θ = 2α1 + 3α2 = ω1.
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If g = F4 then using the conventions of Subsection 23.3, we have
θ = e1 + e2 = ω4.

If g = E8 then using the conventions of Subsection 23.4, we have
θ = e1 + e2 = ω8.

If g = E7 then using the conventions of Subsection 23.5, we have
θ = e1 − e2 = ω1.

If g = E6 then using the conventions of Subsection 23.6, we have

θ = 1
2
(e1 − e2 − e3 +

8∑
i=4

ei) = ω2.

�

32.3. Principal sl2, exponents. Let g be a simple Lie algebra and let
e =

∑
i ei and h ∈ h be such that αi(h) = 2 for all i (i.e., h = 2ρ∨). We

have [h, e] = 2e and h =
∑

i(2ρ
∨, ωi)hi. So defining f :=

∑
i(2ρ

∨, ωi)fi,
we have [h, f ] = −2f , [e, f ] = h. So e, f, h span an sl2-subalgebra of g
called the principal sl2-subalgebra.

Exercise 32.4. Let g = sln+1. Show that the restriction of the n+ 1-
dimensional vector representation V of g to the principal sl2-subalgebra
is the irreducible representation Ln.

Consider now g as a module over its principal sl2-subalgebra. How
does it decompose? To see this, we can look at the weight decompo-
sition of g under h. We have g = n− ⊕ h ⊕ n+, and these summands
correspond to negative, zero and positive weights, respectively. More-
over, all weights are even, and for m > 0, dim g[2m] = rm is the number
of positive roots of height m, i.e., representable as a sum of m simple
roots, while g[0] = h (as ρ∨ is a regular coweight), so dim g[0] = r, the
rank of g.

Definition 32.5. m is called an exponent of g if rm > rm+1. The
multiplicity of m is rm − rm+1.

Since rm is zero for large m while r0 = r, there are r exponents
counting multiplicities. The exponents of g are denoted mi and are
arranged in non-decreasing order: m1 ≤ m2 ≤ ... ≤ mr (including
multiplicities). Note that roots of height 2 are αi + αj where i, j are
connected by an edge. Thus we have r0 = r1 = r, r2 = r − 1 (as the
Dynkin diagram of g is a tree), so m1 = 1 and m2 > 1. We also have
mr = (ρ∨, θ) := hg− 1, where θ is the maximal root. The number hg is
called the Coxeter number of g. Finally, we have

∑r
i=1mi = |R+|.

Proposition 32.6. The restriction of g to the principal sl2-subalgebra
decomposes as ⊕ri=1L2mi+1.
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Proof. This easily follows from the representation theory of sl2 (Sub-
section 11.4) and the definition of mi. �

Example 32.7. The exponents of sln are 1, 2, ..., n− 1.

Exercise 32.8. (i) Show that the exponents of so2n+1 and sp2n are
1, 3, ..., 2n−1, and the exponents of so2n+2 are 1, 3, ..., 2n−1 and n (so
in the latter case, when n is odd, the exponent n has multiplicity 2).

(ii) Show that the exponents of G2 are 1 and 5.

Exercise 32.9. Show that the exponents of F4 are 1, 5, 7, 11, the expo-
nents of E6 are 1, 4, 5, 7, 8, 11, the exponents of E7 are 1, 5, 7, 9, 11, 13, 17,
and the exponents of E8 are 1, 7, 11, 13, 17, 19, 23, 29.

Hint: For m ≥ 1, use the data from Subsections 23.3,23.4,23.5,23.6
to count roots satisfying the equation (ρ∨, α) = m, and find m where
the number of such roots drops as m is increased.

Exercise 32.10. Use the Weyl character formula for the adjoint rep-
resentation and the Weyl denominator formula to prove the following
identity for a simple Lie algebra g:

r∑
i=1

q2mi+1 − q−2mi−1

q − q−1
=

∏
α∈R+:(θ,α∨)>0

q(θ+ρ,α∨) − q−(θ+ρ,α∨)

q(ρ,α∨) − q−(ρ,α∨)
.

(Hint: Compute the character of g as a module over the principal
sl2-subalgebra in two different ways.)

32.4. The Coxeter number and the dual Coxeter number. We
have defined the Coxeter number of a simple complex Lie algebra g (or
a reduced irreducible root system R) to be hR = hg := (θ, ρ∨) + 1 =
mr + 1, where mr is the largest exponent of g. One can also define

the dual Coxeter number of g (or R) as h∨R = h∨g := (θ̃∨, ρ) + 1,
cf. footnote 15 (clearly, h∨R = hR if R is simply laced). So the dual
Coxeter number is the eigenvalue 1

2
(θ, θ + 2ρ) of 1

2
C on the adjoint

representation g, where C ∈ U(g) is the quadratic Casimir element
defined using the inner product in which (θ, θ) = 2 (or, equivalently,
long roots have squared length 2). Indeed, if we identify h and h∗ using

this inner product then θ gets identified with θ̃∨.
Using the formulas from Subsections 23.7 and 32.2, we get

hAn−1 = n,

hBn = 2n, h∨Bn = 2n− 1,

hCn = 2n, h∨Cn = n+ 1,

hDn = 2n− 2,
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hG2 = (2α+3β, 5α∨+3β∨)+1 = 6, h∨G2
=

1

3
(2α+3β, 3α+5β)+1 = 4,

hF4 = (8, 3, 2, 1)·(1, 1, 0, 0)+1 = 12, h∨F4
= (11

2
, 5

2
, 3

2
, 1

2
)·(1, 1, 0, 0)+1 = 9,

hE8 = (23, 6, 5, 4, 3, 2, 1, 0) · (1, 1, 0, 0, 0, 0, 0, 0) + 1 = 30,

hE7 = (17
2
,−17

2
, 5, 4, 3, 2, 1, 0) · (1,−1, 0, 0, 0, 0, 0, 0) + 1 = 18,

hE6 = (4,−4,−4, 4, 3, 2, 1, 0) · 1
2
(1,−1,−1, 1, 1, 1, 1, 1) + 1 = 12.

Note that we always have hR = hR∨ , but if R is not simply laced then,
as we see, the numbers hR, h∨R∨ , h∨R are different, in general.

32.5. Representations of complex, real and quaternionic type.

Definition 32.11. An irreducible finite dimensional C-representation
V of a group G or Lie algebra g is complex type when V � V ∗,
real type if there is a symmetric isomorphism V → V ∗ (i.e., an in-
variant symmetric inner product of V ), and quanternionic type if
there is a skew-symmetric isomorphism V → V ∗ (i.e., an invariant
skew-symmetric inner product of V ).

It is easy to see that any irreducible finite dimensional representation
is of exactly one of these three types (check it!).

Exercise 32.12. Let V be an irreducible finite dimensional represen-
tation of a finite group G.

(i) Show that EndRGV is C for complex type, Mat2(R) for real type
and the quaternion algebra H for quaternionic type. This explains the
terminology.

(ii) Show that V is of real type if and only if in some basis of V the
matrices of all elements of G have real entries.

You may find helpful to look at [E], Problem 5.1.2 (it contains a
hint).

Example 32.13. Let Ln be the irreducible representation of sl2(C)
with highest weight n (i.e., of dimension n + 1). Then Ln is of real
type for even n and quaternionic type for odd n. Indeed, Ln = SnV ,
where V = L1 = C2, so the invariant form on Ln is SnB, where B is
the invariant form on V , which is skew-symmetric.

Now let g be any simple Lie algebra and λ ∈ P+ be such that λ =
−w0λ, so that Lλ is selfdual. How to tell if it is of real or quaternionic
type?

Proposition 32.14. Lλ is of real type if (2ρ∨, λ) is even and of quater-
nionic type if it is odd.
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Proof. The number n := (2ρ∨, λ) is the eigenvalue of the element h
of the principal sl2-subalgebra on the highest weight vector vλ. All
the other eigenvalues are strictly less. Thus the restriction of Lλ to
the principal sl2-subalgebra is of the form Ln ⊕

⊕
m<n kmLm, i.e., Ln

occurs with multiplicity 1. Hence the nondegenerate invariant form on
Lλ restricts to a nondegenerate invariant form on Ln, so by Example
32.13 it is skew-symmetric if n is odd and symmetric if n is even. �

Example 32.15. Consider g = so2n. Then we have

ρ∨ = ρ =
∑
i

ωi = (n− 1, n− 2, ..., 1, 0).

So (2ρ∨, ωn−1) = (2ρ∨, ωn) = n(n−1)
2

. This is odd if n = 2, 3 modulo 4
and even if n = 0, 1 modulo 4. Thus S± carry a symmetric form when
n = 0 mod 4 and a skew-symmetric form if n = 2 mod 4.

Consider now g = so2n+1. Then ρ∨ =
∑

i ω
∨
i = (n, n − 1, ..., 1). So

(2ρ∨, ωn) = n(n+1)
2

. So S carries a skew-symmetric form if n = 1, 2 mod
4 and a symmetric form if n = 0, 3 mod 4.

We obtain the following result.

Theorem 32.16. (Bott periodicity for spin representations) The be-
havior of the spin representations of the orthogonal Lie algebra som is
determined by the remainder r of m modulo 8. Namely:

For r = 1, 7, S is of real type.
For r = 3, 5, S is of quaternionic type.
For r = 0, S+, S− are of real type.
For r = 2, 6, S∗+ = S− (complex type).
For r = 4, S+, S− are of quaternionic type.
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