
31. Fundamental representations of classical Lie algebras

31.1. Type Cn. Since the fundamental weights for g = sp2n are ωi =
(1, ..., 1, 0, .., 0) (i ones), same as for gln, one may think that the fun-
damental representations are also “the same”, i.e. ∧iV , where V is the
2n-dimensional vector representation. Indeed, a Cartan subalgebra in
g is the space of matrices diag(a1, ..., an,−a1, ...,−an), so Lω1 = V ,
with highest weight vector e1. However, the representation ∧2V is not
irreducible, even though it has the correct highest weight ω2. Indeed,
we have ∧2V = ∧2

0V ⊕C, where C is the trivial representation spanned
by the inverse B−1 =

∑
i ei+n∧ ei of the invariant nondegenerate skew-

symmetric form B =
∑

i e
∗
i ∧ e∗i+n ∈ ∧2V ∗ preserved by g, and ∧2

0V is
the orthogonal complement of B.

It turns out that ∧2
0V is irreducible. (You can show it directly or

using the Weyl dimension formula). Thus we have Lω2 = ∧2
0V (if

n ≥ 2).
So what happens for Lωj with any j ≥ 2? To determine this, note

that we have a homomorphism of representations ιB : ∧i+1V → ∧i−1V ,
which is just the contraction with B (we agree that ∧jV = 0 for j < 0).
So we may consider the subrepresentation ∧i0V = Ker(ιB|∧iV ) ⊂ ∧iV .

Exercise 31.1. (i) Let mB : ∧i−1V → ∧i+1V be the operator defined
by mB(u) := B−1 ∧ u. Show that the operators mB, ιB generate a
representation of the Lie algebra sl2 on ∧V := ⊕2n

i=0 ∧i V where they
are proportional to the operators e, f , such that h acts on ∧iV by
multiplication by i− n.

(ii) Show that ιB is injective when i ≥ n and surjective when i ≤ n
(so an isomorphism for i = n).

(iii) Show that Ker(ιB|∧jV ) is irreducible for j ≤ n, and is isomorphic
to Lωj , where we agree that ω0 = 0. Deduce that

∧V = ⊕ni=0Lωi ⊗ Ln−j
as a representation of sp2n ⊕ sl2, where Lm is the m + 1-dimensional
irreducible representation of sl2 of highest weight m.

(iv) Show that every irreducible representation of sp2n occurs in V ⊗N

for some N .
Thus we see another instance of the double centralizer property.

31.2. Type Bn. We have g = so2n+1, preserving the quadratic form
Q =

∑n
i=1 xixi+n + x2

2n+1. A Cartan subalgebra consists of matrices
diag(a1, ..., an,−a1, ...,−an, 0). So the representations ∧iV , 1 ≤ i ≤ n,
where V is the 2n+ 1-dimensional vector representation, have highest
weight (1, ..., 1, 0, ...0) (i ones), which is ωi if i ≤ n− 1.
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Exercise 31.2. Show that the representation ∧iV is irreducible for
0 ≤ i ≤ n.

Thus for 1 ≤ i ≤ n− 1 we have ∧iV = Lωi . On the other hand, the
representation ∧nV , even though irreducible, is not fundamental. In-
deed, its highest weight is (1, ..., 1) = 2ωn, as ωn = (1

2
, ..., 1

2
). In fact, we

see that the representation Lωn does not occur in V ⊗N for any N , since
coordinates of its highest weight are not integer. As mentioned above,
this representation is called the spin representation S. Vectors in S
are called spinors. The weights of S are Weyl group translates of ωn,
so they are (±1

2
, ...,±1

2
) for any choices of signs, so dimS = 2n, and

the character of S is given by the formula

χS(x1, ..., xn) = (x
1
2
1 + x

− 1
2

1 )...(x
1
2
n + x

− 1
2

n ).

This is supposed to be the trace of diag(x1, ..., xn, x
−1
1 , ..., x−1

n , 1) ∈
SO2n+1(C), which does not make sense since the square roots on the
right hand side are defined only up to sign. This shows that the spin
representation S does not lift to the group SO2n+1(C). Namely, the
group SO2n+1(C) is not simply connected, and the representation S

only lifts to the universal covering group S̃O2n+1(C), which is called
the spin group, and is denoted Spin2n+1(C).

Example 31.3. Let n = 1. Then g = so3(C) = sl2(C) and S is
the 2-dimensional irreducible representation. We know that this repre-
sentation does not lift to SO3(C) but only to its double cover SL2(C),
which is simply connected (so π1(SO3(C)) = Z/2, demonstrated by the
famous belt trick). So we have Spin3(C) = SL2(C). This is related
to the spin phenomenon in quantum mechanics which we will discuss
later. This explains the terminology.

Proposition 31.4. For n ≥ 3 we have π1(SOn(C)) = Z/2.

Proof.

Lemma 31.5. Let Xn be the hypersurface in Cn given by the equation
z2

1 + ... + z2
n = 1. Then for any 1 ≤ k ≤ n − 2 we have πk(Xn) = 0,

i.e., every continuous map Sk → Xn contacts to a point. E.g., Xn is
connected for n ≥ 2, simply connected for n ≥ 3, doubly connected for
n ≥ 4, etc.

Proof. The surface Xn is the complexification of the n − 1-sphere,
XR
n := Xn ∩ Rn = Sn−1. We will define a continuous family of maps

ft : Xn → Xn such that f1 = Id and f0 lands in XR
n , with ft|XR

n
= Id.

This will show that XR
n is a retract of Xn, so Xn has the required
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properties since so does XR
n (indeed, any map γ = f1 ◦ γ : Sk → Xn is

homotopic to the map f0 ◦ γ in XR
n , the homotopy being ft ◦ γ).

Let z = x + iy ∈ Xn, where x, y ∈ Rn. Then z2 = 1, so we have
x2 − y2 = 1, xy = 0. Hence

(x+ tiy)2 = x2 − t2y2 = 1 + (1− t2)y2 ≥ 1.

So we may define

ft(z) :=
x+ tiy√
x2 − t2y2

.

Then ft(z)2 = 1, f1(z) = z, and f0(z) = x
|x| lands in the sphere Sn−1,

as needed. �

In particular, for n = 4, changing coordinates, we see that the surface
ad− bc = 1 is doubly connected, i.e., SL2(C) is doubly connected and
thus π1(SO3(C)) = Z/2 (which we already knew).

Now, the group SOn(C) acts onXn transitively with stabilizer SOn−1(C),
so we have a fibration SOn → Xn with fiber SOn−1. Therefore, we have
an exact sequence

π2(Xn)→ π1(SOn−1(C))→ π1(SOn(C))→ π1(Xn)

(a portion of the long exact sequence of homotopy groups). By Lemma
31.5, the first and the last group in this sequence are trivial for n ≥ 4
which implies that in this case π1(SOn−1(C)) ∼= π1(SOn(C)), so we
conclude by induction that π1(SOn(C)) = Z/2 for all n ≥ 3 (using the
case n = 3 as the base). �

Corollary 31.6. For n ≥ 1 the simply connected group Spin2n+1(C) is
a double cover of SO2n+1(C).

Exercise 31.7. (i) Use a similar argument to show that the groups
SLn+1(C) and Sp2n(C) are simply connected for n ≥ 1 (consider their
action on nonzero vectors in the vector representation and compute the
stabilizer).

(ii) Generalize this argument to show that for any k ≥ 1 the higher
homotopy group πk for the classical groups SLn+1(C), SOn(C), Sp2n(C)
stabilizes (i.e., becomes independent on n) when n is large enough. How
large does n have to be for that?

31.3. Type Dn. We have g = so2n, preserving the quadratic form

Q =
n∑
i=1

xixi+n.

A Cartan subalgebra consists of matrices diag(a1, ..., an,−a1, ...,−an).
So the representation ∧iV , 1 ≤ i ≤ n, where V is the 2n-dimensional
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vector representation, have highest weight (1, ..., 1, 0, ...0) (i ones), which
is ωi if i ≤ n− 2.

Exercise 31.8. Show that the representation ∧iV is irreducible for
0 ≤ i ≤ n− 1.

Thus Lωi = ∧iV for i ≤ n− 2. On the other hand, while the repre-
sentation L(1,...,1,0) is irreducible, it is not fundamental, as (1, ..., 1, 0) =
ωn−1 + ωn, where ωn−1 = (1

2
, ..., 1

2
, 1

2
) and ωn = (1

2
, ..., 1

2
,−1

2
). The fun-

damental representations Lωn−1 , Lωn are called the spin representa-
tions and denoted S+, S−; their elements are called spinors. Similarly
to the odd dimensional case, they have dimensions 2n−1 and characters

χS± =
(

(x
1
2
1 + x

− 1
2

1 )...(x
1
2
n + x

− 1
2

n )
)
±

where the subscript ± means that we take the monomials with odd
(for –), respectively even (for +) number of minuses. This shows that,
similarly to the odd dimensional case, S+, S− don’t occur in V ⊗N and
don’t lift to SO2n(C) but require the universal covering Spin2n(C) =

S̃O2n(C), called the spin group. Proposition 31.4 implies

Corollary 31.9. For n ≥ 2 the group Spin2n(C) is a double cover of
SO2n(C).

Example 31.10. Consider the spin groups and representations for
small dimensions. We have seen that Spin3 = SL2, S = C2. We
also have Spin4 = SL2 × SL2, with S+, S− being the 2-dimensional
representations of the factors. We have Spin5 = Sp4, with S being
the 4-dimensional vector representation. So SO5 = Sp4/(±1). Finally,
Spin6 = SL4, with S+, S− being the 4-dimensional representation V
and its dual V ∗. Thus SO6 = SL4/(±1).

Exercise 31.11. Let V be a finite dimensional vector space with a
nondegenerate inner product. Consider the algebra SV of polynomial
functions on V ∗. Let x1, ..., xn be an orthonormal basis of V , so that
SV ∼= C[x1, ..., xn], and let R2 :=

∑n
i=1 x

2
i ∈ S2V be the “squared

radius”. Also let ∆ =
∑n

i=1
∂2

∂x2i
be the Laplace operator. Note that

the Lie algebra so(V ) acts on SV by automorphisms and R2 and ∆ are
so(V )-invariant. A polynomial P ∈ SV is called harmonic if ∆P = 0.

(i) Show that the operator of multiplication by R2 and the Laplace
operator ∆ define an action of sl2 on SV which commutes with so(V ).
Namely, they are proportional to f, e respectively. Compute the oper-
ator h (it will be a first order differential operator in xi).

(ii) Let Hm ⊂ SmV be the space of harmonic polynomials of degree
m (a representation of so(V )). Show that as an so(V ) ⊕ sl2-module,
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SV decomposes as
SV = ⊕∞m=0Hm ⊗Wm,

where Wm are irreducible (infinite dimensional) representations of sl2.
Find the dimensions of Hm.

(iii) Show that Hm is irreducible, in fact Hm = Lmω1 . Decompose
SmV into a direct sum of irreducible representations of so(V ).

(iv) Show that Wm are Verma modules and compute their highest
weights.

(v) For s ∈ C consider the algebra

As := C[x1, ..., xn]/(x2
1 + ...+ x2

n − s),
the algebra of polynomial functions on the hypersurface x2

1+...+x2
n = s

(here (f) denotes the principal ideal generated by f). This algebra has
a natural action of so(V ). Decompose A into a direct sum of irreducible
representations of so(V ).

31.4. The Clifford algebra. It is important to be able to realize the
spin representations explicitly. The reason it is somewhat tricky is that
these representations don’t occur in tensor powers of V (as they have
half-integer weights). However, the tensor product of a spin represen-
tation with its dual, S ⊗ S∗, has integer weights and does express in
terms of V . So we need to extract ”the square root” from this repre-
sentation, in the sense that “the space of vectors of size n is the square
root of the space of square matrices of size n”. This is the idea behind
the Clifford algebra construction.

Definition 31.12. Let V be a finite dimensional vector space over an
algebraically closed field k of characteristic 6= 2 with a nondegener-
ate symmetric inner product (, ). The Clifford algebra Cl(V ) is the
algebra generated by vectors v ∈ V with defining relations

v2 = 1
2
(v, v), v ∈ V.

Thus for a, b ∈ V we have

ab+ ba = (a+ b)2 − a2 − b2 = 1
2
((a+ b, a+ b)− (a, a)− (b, b)) = (a, b).

This is a deformation of the exterior algebra ∧V which is defined in
the same way but v2 = 0. More precisely, Cl(V ) has a filtration
(defined by setting deg(v) = 1, v ∈ V ) such that the associated
graded algebra receives a surjective map φ : ∧V → grCl(V ). We
will show that this is a nice (“flat”) deformation, in the sense that
dim Cl(V ) = dim∧V = 2dimV , so that φ is an isomorphism. This is
a kind of Poincaré-Birkhoff-Witt theorem (namely, it is similar to the
PBW theorem for Lie algebras, and in fact a special case of one if you
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pass from Lie algebras to more general Lie superalgebras). Namely, we
have the following theorem.

Theorem 31.13. The algebra Cl(V ) is isomorphic to Mat2n(k) if
dimV = 2n and to Mat2n(k)⊕Mat2n(k) if dimV = 2n+ 1.

Proof. Let us start with the even case. Pick a basis a1, ..., an, b1, ..., bn
of V so that the inner product is given by

(ai, aj) = (bi, bj) = 0, (ai, bj) = δij.

We have aiaj + ajai = 0, bibj + bjbi = 0, biaj + ajbi = 1. Define the
Cl(V )-module M = ∧(a1, ..., an) with the action of Cl(V ) defined by

ρ(ai)w = aiw, ρ(bi)w = ∂w
∂ai
,

where
∂
∂ai
ak1 ...akr = (−1)j−1ak1 ...âkj ...akr

if i = kj for some j (where hat means that the term is omitted), and
otherwise the result is zero. It is easy to check that this is indeed a
representation.

Now for I = (i1 < ... < ik), J = (j1 < ... < jm) consider the elements
cIJ = ai1...aikbj1 ...bjm ∈ Cl(V ). It is easy to see that these elements
span Cl(V ). Also it is not hard to do the following exercise.

Exercise 31.14. Show that the operators ρ(cIJ) are linearly indepen-
dent.

Thus ρ : Cl(V )→ EndM is an isomorphism, which proves the propo-
sition in even dimensions.

Now, if dimV = 2n+ 1, we pick a basis as above plus an additional
element z such that (z, ai) = (z, bi) = 0, (z, z) = 2. So we have

zai + aiz = 0, zbi + biz = 0, z2 = 1.

Now we can define the module M± on which ai, bi act as before and
zw = ±(−1)degww. It is easy to see as before that the map

ρ+ ⊕ ρ− : Cl(V )→ EndM+ ⊕ EndM−.

is an isomorphism. This takes care of the odd case. �

We will now construct an inclusion of the Lie algebra so(V ) into
the Clifford algebra. This will allow us to regard representations of
the Clifford algebra as representations of so(V ), which will give us a
construction of the spin representations.

Consider the linear map ξ : ∧2V = so(V ) → Cl(V ) given by the
formula

ξ(a ∧ b) = 1
2
(ab− ba) = ab− 1

2
(a, b).
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Then

[ξ(a ∧ b), ξ(c ∧ d)] = [ab, cd] = abcd− cdab = (b, c)ad− acbd− cdab =

(b, c)ad− (b, d)ac+ acdb− cdab =

(b, c)ad− (b, d)ac+ (a, c)db− cadb− cdab =

(b, c)ad− (b, d)ac+ (a, c)db− (a, d)cb =

(b, c)ξ(a∧d)−(b, d)ξ(a∧c)+(a, c)ξ(d∧b)−(a, d)ξ(c∧b) = ξ([a∧b, c∧d]).

Thus ξ is a homomorphism of Lie algebras and we can define the repre-
sentations ξ∗M for even dimV and ξ∗M± for odd dimV by ρξ∗M(a) :=
ρM(ξ(a)).

The representation ξ∗M is reducible, namely

ξ∗M = (ξ∗M)0 ⊕ (ξ∗M)1,

where subscripts 0 and 1 indicate the even and odd degree parts.

Exercise 31.15. (i) Show that for even dimV , the representations
(ξ∗M)0, (ξ

∗M)1 are isomorphic to S+, S− respectively.
(ii) Show that for odd dimV , the representations ξ∗M+ and ξ∗M−

are both isomorphic to S.
Hint. Find the highest weight vector for each of these representa-

tions and compute the weight of this vector. Then compare dimensions.
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