29. Representations of GL_n , III

29.1. Schur polynomials and characters of representations of the symmetric group. Using Schur-Weyl duality and the character formula for representations of GL_n , we can obtain information about characters of the symmetric group. Namely, it follows from the Weyl character formula that the characters of representations of GL_n are given by the formula

$$s_{\lambda}(x_1, ..., x_n) = \frac{\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) x_{\sigma(1)}^{\lambda_1 + N - 1} ... x_{\sigma(n)}^{\lambda_n}}{\prod_{i < j} (x_i - x_j)} = \frac{\operatorname{det}(x_i^{\lambda_j + N - j})}{\prod_{i < j} (x_i - x_j)}.$$

These symmetric polynomials are called **Schur polynomials**. For example, the character of $S^m V$ is

$$s_{(m)}(x_1,...,x_n) = \sum_{1 \le j_1 \le ... \le j_m \le n} x_{j_1}...x_{j_m} = h_m(x_1,...,x_n),$$

the *m*-th **complete symmetric function**, and the character of $\wedge^m V$ is

$$s_{(1^m)}(x_1, ..., x_n) = \sum_{1 \le j_1 < ... < j_m \le n} x_{j_1} ... x_{j_m} = e_m(x_1, ..., x_m),$$

the *m*-th elementary symmetric function.

Let us now compute the trace in $V^{\otimes N}$ of $x \otimes \sigma$, where $x = \text{diag}(x_1, ..., x_n)$ is a diagonal matrix and $\sigma \in S_N$ a permutation. Let σ have m_i cycles of length *i*. Then we have

$$\operatorname{Tr}|_{V^{\otimes N}}(x \otimes \sigma) = \prod_{i} (x_1^i + \dots + x_n^i)^{m_i}.$$

On the other hand, using Schur-Weyl duality, we get

$$\mathrm{Tr}|_{V^{\otimes N}}(x\otimes\sigma) = \sum_{\lambda} \chi_{\lambda}(\sigma) s_{\lambda}(x),$$

where $\chi_{\lambda}(\sigma) = \text{Tr}|_{\pi_{\lambda}}(\sigma)$ is the character of the representation π_{λ} of S_N . Thus we have

$$\sum_{\lambda} \chi_{\lambda}(\sigma) s_{\lambda}(x) = \prod_{i} (x_1^i + \dots + x_n^i)^{m_i}.$$

Multiplying this by the discriminant, we get

$$\sum_{\lambda} \chi_{\lambda}(\sigma) \det(x_i^{\lambda_j + N - j}) = \prod_{i < j} (x_i - x_j) \cdot \prod_i (x_1^i + \dots + x_n^i)^{m_i}.$$

Thus we get

Theorem 29.1. (Frobenius character formula) The character value $\chi_{\lambda}(\sigma)$ is the coefficient of $x_1^{\lambda_1+N-1}...x_N^{\lambda_N}$ in the polynomial

$$\prod_{i< j} (x_i - x_j) \cdot \prod_i (x_1^i + \dots + x_n^i)^{m_i}.$$

Exercise 29.2. Let $V = \mathbb{C}^2$ be the 2-dimensional tautological representation of $GL_2(\mathbb{C})$. Decompose $V^{\otimes N}$ into a direct sum of irreducible representations of $GL_2(\mathbb{C}) \times S_N$ and compute the characters and dimensions of all the irreducible representations of GL_2 and S_N that occur.

29.2. Howe duality. Howe duality is another instance when we have a double centralizer property. Consider two finite dimensional complex vector spaces V, W, and consider the symmetric power $S^n(V \otimes W)$ as a representation of $GL(V) \times GL(W)$.

Theorem 29.3. (Howe duality) We have a decomposition

$$S^n(V \otimes W) = \bigoplus_{\lambda:|\lambda|=n} S^{\lambda}V \otimes S^{\lambda}W.$$

Note that if λ has more parts than dim V or dim W then the corresponding summand is zero.

Proof. We have

$$S^{n}(V \otimes W) = ((V \otimes W)^{\otimes n})^{S_{n}} = (V^{\otimes n} \otimes W^{\otimes n})^{S_{n}}$$

So using the Schur-Weyl duality, we get

$$S^{n}(V \otimes W) = ((\bigoplus_{\lambda:|\lambda|=n} S^{\lambda} V \otimes \pi_{\lambda}) \otimes (\bigoplus_{\mu:|\mu|=n} S^{\mu} W \otimes \pi_{\mu}))^{S_{n}} = \bigoplus_{\lambda,\mu:|\lambda|=|\mu|=n} S^{\lambda} V \otimes S^{\mu} W \otimes (\pi_{\lambda} \otimes \pi_{\mu})^{S_{n}}.$$

But the character of π_{λ} is integer-valued, so $\pi_{\lambda} = \pi_{\lambda}^*$. Thus by Schur's lemma $(\pi_{\lambda} \otimes \pi_{\mu})^{S_n} = \mathbb{C}^{\delta_{\lambda\mu}}$, and we get

$$S^{n}(V \otimes W) = \bigoplus_{\lambda:|\lambda|=n} S^{\lambda}V \otimes S^{\lambda}W,$$

as claimed.

Note that we never used that V, W were finite dimensional, so the statement is valid for any complex vector spaces V, W.

Corollary 29.4. (Cauchy identity) If $x = (x_1, ..., x_r)$ and $y = (y_1, ..., y_s)$ then one has

$$\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) z^{|\lambda|} = \prod_{i=1}^{r} \prod_{j=1}^{s} \frac{1}{1 - z x_i y_j}$$

Proof.

Lemma 29.5. (Molien formula). Let $A: V \to V$ be a linear operator on a finite dimensional vector space V. Denote by S^nA the induced linear operator $A^{\otimes n}$ on S^nV . Then

$$\sum_{n=0}^{\infty} \operatorname{Tr}(S^n A) z^n = \frac{1}{\det(1-zA)}.$$

Proof. Let A have eigenvalues $x_1, ..., x_r$. Then the eigenvalues of $S^n A$ are all possible monomials in x_i of degree r. Thus $Tr(S^n A)$ is the sum of these monomials, which is the complete symmetric function $h_n(x_1, ..., x_r)$. So

$$\sum_{n=0}^{\infty} \operatorname{Tr}(S^n A) z^n = \sum_{n \ge 0} h_n(x_1, ..., x_r) z^n = \prod_{i=1}^r \frac{1}{1 - zx_i} = \frac{1}{\det(1 - zA)}.$$

Now let $X \in GL(V)$ with eigenvalues $x_1, ..., x_r$ and $Y \in GL(W)$ with eigenvalues $y_1, ..., y_s$. Then by Howe duality

$$\operatorname{Tr}(S^n(X \otimes Y)) = \sum_{\lambda:|\lambda|=n} s_{\lambda}(x) s_{\lambda}(y).$$

On the other hand, by Molien's formula

$$\sum_{n\geq 0} \operatorname{Tr}(S^n(X\otimes Y))z^n = \frac{1}{\det(1-z(X\otimes Y))} = \prod_{i,j} \frac{1}{1-zx_iy_j}$$

Comparing the two formulas, we obtain the statement.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.