
28. Representations of GLn, II

28.1. Schur functors.

Definition 28.1. For a partition λ of N we define the Schur functor
Sλ on the category of complex vector spaces (or complex representa-
tions of any group or Lie algebra) by SλV = HomSN (πλ, V

⊗n).

Thus we have
V ⊗N = ⊕λSλV ⊗ πλ,

and if λ has ≤ n parts and V = Cn then SλV = Lλ as a representation
of GL(V ) = GLn(C).

Example 28.2. 1. We have S(n)V = SnV , S(1n)V = ∧nV .
2. We have

V ⊗ V = S(2)V ⊗ C+ ⊕ S(1,1)V ⊗ C− = S2V ⊕ ∧2V

where S2 acts in the first summand trivially and in the second one by
sign.

Consider now the decomposition of V ⊗ V ⊗ V . We have

V ⊗ V ⊗ V = S(3)V ⊗ C+ ⊕ S(2,1)V ⊗ C2 ⊕ S(1,1,1)V ⊗ C−
= S3V ⊕ S(2,1)V ⊗ C2 ⊕ ∧3V.

Thus

S2V ⊗ V = S3V ⊕ S(2,1)V, ∧2V ⊗ V = ∧3V ⊕ S(2,1)V.

We conclude that S(2,1)V can be described as the space of tensors sym-
metric in the first two components whose full symmetrization is zero,
or tensors antisymmetric on the first two components whose full anti-
symmetrization is zero.

Exercise 28.3. 1. Let V = Cn, n ≥ 4. Decompose V ⊗4 as a direct
sum of irreducible representations of GLn(C) × S4. Characterize the
occurring Schur functors as spaces of tensors with certain symmetry
properties, similarly to the above description of S(2,1)V . Compute the
decompositions of V ⊗ S3V , V ⊗ ∧3V , S2V ⊗ S2V, S2V ⊗ ∧2V and
∧2V ⊗ ∧2V into Schur functors.

2. Decompose V ⊗ V ∗, V ⊗ V ⊗ V ∗ into a direct sum of irreducible
representations. Describe the algebra EndGLn(C)(V ⊗ V ∗ ⊗ V ∗).

Let us compute the dimension of SλV when dimV = N and λ has
k parts. We have ρ = (N − 1, N − 2, ..., 1, 0) (for SLN), so the Weyl
dimension formula tells us that

dimSλV =
∏

1≤i<j≤N

λi − λj + j − i
j − i

=
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∏
1≤i<j≤k

λi − λj + j − i
j − i

∏
1≤i≤k<j≤N

λi + j − i
j − i

=

∏
1≤i<j≤k

λi − λj + j − i
j − i

k∏
i=1

(N + 1− i)...(N + λi − i)
(k + 1− i)...(k + λi − i)

.

We obtain

Proposition 28.4. dimSλV = Pλ(N) where Pλ is a polynomial of
degree |λ| with rational coefficients and integer roots. Moreover, the
roots of Pλ are all the integers in the interval [1− λ1, k− 1] (occurring
with multiplicities).

Moreover, we see that Pλ(N) is an integer-valued polynomial, i.e.,
it takes integer values at integer points (this is equivalent to being an
integer linear combination of

(
N
j

)
).

Example 28.5.

P(n)(N) = dimSnV =

(
N + n− 1

n

)
, P(1n)(N) = dim∧nV =

(
N

n

)
.

Also

P(a,b)(N) = (a− b+ 1)
N...(N + a− 1) · (N − 1)...(N + b− 2)

(a+ 1)!b!
=

a− b+ 1

a+ 1

(
N + a− 1

a

)(
N + b− 2

b

)
E.g., P(2,1)(N) = dimS(2,1)V = N(N+1)(N−1)

3
. Also,

P(a,a)(N) =
1

a+ 1

(
N + a− 1

a

)(
N + a− 2

a

)
=

1

N + a− 1

(
N + a− 1

N − 1

)(
N + a− 2

N − 2

)
= Nar(N + a− 1, N − 1),

the Narayana numbers.

Exercise 28.6. Let gq be the diagonal matrix with diagonal elements
1, q, q2, ..., qN−1. Compute the trace of gq in SλV in the product form.
Write the answer explicitly (as a polynomial in q) with positive coeffi-
cients in the case |λ| ≤ 3.

Exercise 28.7. Draw the weights of the representation S(2,2)C3 of
SL(3) on the hexagonal lattice, and indicate their multiplicities.
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28.2. The fundamental theorem of invariant theory. Suppose
we have a finite dimensional vector space V and a collection of tensors
Ti ∈ V ⊗mi ⊗ V ∗⊗ni , i = 1, ..., k. An important problem is to describe
“coordinate free” invariants of such a collection of tensors, i.e., poly-
nomials functions F (T1, ..., Tk) which are invariant under the action of
GL(V ). How can we classify such functions? This sounds formidably
hard in such generality, but turns out to be very easy using Schur-Weyl
duality.

It suffices to study such functions that have homogeneity degree di
with respect to each Ti. To do so, we will depict each Ti by a vertex
with mi incoming and ni outgoing arrows. We should think of incoming
arrows as V -components and outgoing ones as V ∗-components. Let
us draw di such vertices for each i. To construct an invariant, let us
connect the arrows preserving orientation so that all the arrows are used
(this will only be possible if the number of incoming arrows equals the
number of outgoing ones; otherwise every invariant of the multidegree
(d1, ..., dk) will be zero). To the obtained graph Γ we can assign the
convolution of tensors, which gives an invariant function FΓ of the
correct multidegree.

Theorem 28.8. The functions FΓ for various Γ span the space of
invariant functions.

Proof. An invariant function may be viewed as an invariant element of
the space

⊗k
i=1(V ∗⊗mi ⊗ V ⊗ni)⊗di , which we may write as the space

of linear maps V ⊗M → V ⊗N , where M =
∑
dimi is the number of

incoming arrows and N =
∑
dini the number of outgoing arrows. If

M 6= N , there are no nonzero invariant maps. Otherwise, by the Schur-
Weyl duality, the space of such maps is spanned by maps defined by
permutations. But any such permutation defines a graph Γ, so the
corresponding invariant is just the convolution FΓ, which implies the
statement. �

Remark 28.9. Note that this proof also implies that if dimV is large
compared to mi, ni, di then the functions FΓ for non-isomorphic graphs
Γ are linearly independent, so they form a basis in the algebra of A
of invariant functions. (Here the vertices of Γ are colored by k colors
corresponding to the types of tensors, and at every vertex of color i
the incoming edges are labeled by [1, ni] and outgoing edges by [1,mi].
Isomorphisms are required to preserve these colorings and labelings).

Example 28.10. Assume that mi = ni = 1, i.e., T1, ..., Tk are just
matrices with GLn acting by conjugation. Then all graphs that we can
get are unions of cycles, so Theorem 28.8 implies that the algebra Ak,n
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of such invariants (where n = dimV ) is generated by traces of cyclic
words

Fj1,...,jr = Tr(Tj1 ...Tjr)

(here “cyclic” means that words differing by a cyclic permutation are
considered to be the same). Moreover, by Remark 28.9, these elements
are “asymptotically algebraically independent”, i.e. there is no nonzero
polynomial of them that vanishes for all sizes of matrices n.

This implies that there are no universal polynomial identities for
matrices of all sizes. Indeed, if P (T1, ..., Tk) = 0 for square matri-
ces T1, ..., Tk of any size n (where P is a fixed nonzero noncommutative
polynomial) then adding another matrix Tk+1, we get Tr(P (T1, ..., Tk)Tk+1) =
0, which contradicts linear independence of Fj1,...,jr .

In particular, this implies that the universal Lie polynomials µn(x, y)
of degree n occurring in the Baker-Campbell-Hausdorff formula, i.e.,
such that

log(exp(x) exp(y)) ∼
∑
m≥1

µm(x, y)

n!

for x ∈ Lie(G) for any Lie group G, are unique (in fact, they are already
unique for the family of groups GLn(C) for all n).

This is false, however, if the size of matrices is fixed; in this case there
are plenty of polynomial identities for each matrix size. For example,
for matrices of size 1 we have [X, Y ] = 0 and for matrices of size 2
we have [Z, [X, Y ]2] = 0. For general n there is the Amitsur-Levitzki
identity given in Exercise 28.11.

Exercise 28.11. Let X1, ..., X2n be complex n by n matrices. Let
Λ = ∧(ξ1, ..., ξ2n) be the exterior algebra generated by ξi with relations
ξiξj = −ξjξi, ξ2

i = 0. Let X be the matrix over Λ given by

X := X1ξ1 + ...+X2nξ2n.

(i) Let Y = X2. Show that Y ∈ Matn(Λ+) where Λ+ is the com-
mutative subalgebra of Λ spanned by the elements of even degrees.
Compute Y n.

(ii) Show that Tr(Y k) = 0 ∈ Λ+ for k = 1, ..., n.
(iii) Deduce that Y n = 0. This should yield the Amitsur-Levitzki

identity ∑
σ∈S2n

sign(σ)Xσ(1)...Xσ(2n) = 0.

(iv) Deduce the same identity over any commutative ring R.
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