
26. The Weyl character formula

26.1. Characters. Let V be a finite dimensional representation of a
semisimple Lie algebra g. Recall that the action of g on V can be expo-
nentiated to the action of the corresponding simply connected complex
Lie group G. Recall also that the character of a finite dimensional
representation V of any group G is the function

χV (g) = Tr|V (g).

Let us compute this character in our case. To this end, let h ⊂ g
be a Cartan subalgebra, h ∈ h, and let us compute χV (eh). Note
that this completely determines χV since it determines χV (ex) for any
semisimple element x ∈ g, and semisimple elements form a dense open
set in g (complement of zeros of some polynomial). So elements of the
form ex as above form a dense open set at least in some neighborhood
of 1 in G, and an analytic function on G is determined by its values on
any nonempty open set.

We know that V has a weight decomposition: V = ⊕µ∈PV [µ]. Thus
we have

χV (eh) =
∑
µ∈P

dimV [µ]eµ(h).

Consider the group algebra Z[P ]. It sits naturally inside the algebra of
analytic functions on h via λ 7→ eλ, where eλ(h) := eλ(h), and we see
that χV ∈ Z[P ], namely

χV =
∑
µ∈P

dimV [µ]eµ.

We will call the element χV the character of V .

26.2. Category O. Note that the above definition of character is a
purely formal algebraic definition, i.e., χV is simply the generating
function of dimensions of weight subspaces of V . So it makes sense
for any (possibly infinite dimensional) representation V with a weight
decomposition into finite dimensional weight subspaces, except we may
obtain an infinite sum. More precisely, we make the following defini-
tion.

Definition 26.1. The category Oint is the category of representations
V of g with weight decomposition into finite dimensional weight spaces
V = ⊕µ∈PV [µ], such that P (V ) is contained in the union of sets λi−Q+

for a finite collection of weights λ1, ..., λN ∈ P (depending on V ).13

13Usually one also adds the condition that V is a finitely generated U(g)-module,
but we don’t need this condition here, so we won’t impose it.
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Here the subscript “int” indicates that we consider only integral
weights (i.e., ones in P ). However, for brevity we will drop this sub-
script in this section and just denote this category by O.

For example, any highest weight module belongs to O.
Let R be the ring of series a :=

∑
µ∈P aµe

µ (aµ ∈ Z) such that the

set P (a) of µ with aµ 6= 0 is contained in the union of sets λi −Q+ for
a finite collection of weights λ1, ..., λN ∈ P . Then for every V ∈ O we
can define the character χV ∈ R. Moreover, it is easy to see that if

0→ X → Y → Z → 0

is a short exact sequence in O then χY = χX + χZ , and that for any
V, U ∈ O we have V ⊗ U ∈ O and χV⊗U = χV χU .

Example 26.2. Let V = Mλ be the Verma module. Recall that as
a vector space Mλ = U(n−)vλ, and that U(n−) = ⊗α∈R+C[e−α] (using
the PBW theorem). Thus∑

µ

U(n−)[µ]eµ =
1∏

α∈R+
(1− e−α)

and hence

χMλ
=

eλ∏
α∈R+

(1− e−α)
.

It is convenient to rewrite this formula as follows:

χMλ
=
eλ+ρ

∆
, ∆ :=

∏
α∈R+

(eα/2 − e−α/2).

The (trigonometric) polynomial ∆ is called the Weyl denominator.

Note that we have a homomorphism ε : W → Z/2 given by the
formula w 7→ det(w|h), i.e. w 7→ (−1)`(w); it is defined on simple reflec-
tions by si 7→ −1. This homomorphism is called the sign character.
For example, for type An−1 this is the sign of a permutation in Sn. We
will say that an element of f ∈ C[P ] is anti-invariant under W if
w(f) = (−1)`(w)f for all w ∈ W .

Proposition 26.3. The Weyl denominator ∆ is anti-invariant under
W .

Proof. Since si permutes positive roots not equal to αi and sends αi to
−αi, it follows that si∆ = −∆. �
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26.3. The Weyl character formula.

Theorem 26.4. (Weyl character formula) For any λ ∈ P+ the char-
acter χλ := χLλ of the irreducible finite dimensional representation Lλ
is given by

χλ =

∑
w∈W (−1)`(w)ew(λ+ρ)

∆
.

The proof of this theorem is in the next subsection.

Corollary 26.5. (Weyl denominator formula) One has

∆ =
∑
w∈W

(−1)`(w)ewρ.

Proof. This follows from the Weyl character formula by setting λ = 0
(as L0 = C is the trivial representation). �

For example, for g = sln Corollary 26.5 reduces to the usual product
formula for the Vandermonde determinant.

26.4. Proof of the Weyl character formula. Consider the product
∆χλ ∈ Z[P ]. We know that χλ is W -invariant, so this product is
W -anti-invariant. Thus,

∆χλ =
∑
µ∈P

cµe
µ,

where cwµ = (−1)`(w)cµ. Moreover, cµ = 0 unless µ ∈ λ+ ρ−Q+, and
cλ+ρ = 1. Thus to prove the Weyl character formula, we need to show
that cµ = 0 if µ ∈ P+ ∩ (λ+ ρ−Q+) and µ 6= λ+ ρ.

To this end, we will construct the above decomposition ∆χλ using
representation theory, so that this vanishing property is apparent from
the construction.

First recall from Subsection 18.3 that we have the Casimir element
C of U(g) given by the formula C =

∑
i aia

i for a basis ai ∈ g with dual
basis ai of g under the Killing form. This element is central, so acts
by a scalar on every highest weight (in particular, finite dimensional
irreducible) representation. We can write C in the form

C =
∑
j

x2
j +

∑
α∈R+

(e−αeα + eαe−α),

for an orthonormal basis xj of h. Since [eα, e−α] = hα, we find that

C =
∑
j

x2
j + 2

∑
α∈R+

e−αeα +
∑
α∈R+

hα.

Thus we get
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Lemma 26.6. If V is a highest weight representation with highest
weight λ then C|V = (λ, λ+ 2ρ) = |λ+ ρ|2 − |ρ|2.

Now we will define a sequence of modules K(b) from category O
parametrized by some binary strings b. This is done inductively. We
set K(∅) = Lλ. Now suppose K(b) is already defined. If K(b) = 0
then we set K(b0) = K(b1) = 0. Otherwise, pick a nonzero vector
vb ∈ K(b), of some weight ν(b) ∈ λ − Q+ such that the height of
λ− ν(b) takes the minimal possible value. Then vb is a highest weight
vector, and we can consider the corresponding homomorphism

ξb : Mνb → K(b).

Let K(b1), K(b0) be the kernel and cokernel of ξb. We have

χK(b1) − χMν(b)
+ χK(b) − χK(b0) = 0.

Thus we have

χK(b) = χMν(b)
− χK(b1) + χK(b0).

Now, it is clear that for every µ, every sufficiently long sequence b
satisfies K(b)[µ] = 0. So iterating this formula starting with b = ∅, we
will get

(26.1) χλ =
∑
b

(−1)Σ(b)χMν(b)

where Σ(b) is the sum of digits of b (which could a priori be an infinite
sum). So

∆χλ =
∑
b

(−1)Σ(b)eν(b)+ρ.

Also note that by induction in the length of b we can conclude that the
eigenvalue of C on Mν(b) is |λ+ ρ|2− |ρ|2 regardless of b, which implies
that

|ν(b) + ρ|2 = |λ+ ρ|2

for all b; in particular, this shows that the sum (26.1) is finite.
So it remains to show that if µ = λ + ρ− β ∈ P+ with β ∈ Q+ and

β 6= 0 then |µ|2 < |λ+ ρ|2. Indeed,

|λ+ ρ|2 − |µ|2 = |λ+ ρ|2 − |λ− β + ρ|2 =

2(λ+ ρ, β)− |β|2 > (λ+ ρ, β)− |β|2 = (λ+ ρ− β, β) ≥ 0.

This completes the proof of the Weyl character formula.

Exercise 26.7. Let Q be the root lattice of a simple Lie algebra g, Q+

its positive part. Define the Kostant partition function to be the
function p : Q → Z≥0 which attaches to β ∈ Q+ the number of ways

141



to write β as a sum of positive roots of g (where the order does not
matter), and p(β) = 0 if β /∈ Q+.

(i) Show that ∑
β∈Q+

p(β)e−β =
1∏

α∈R+
(1− e−α)

.

(ii) Prove the Kostant multiplicity formula

dimLλ[γ] =
∑
w∈W

(−1)`(w)p(w(λ+ ρ)− ρ− γ).

(iii) Compute p(k1α1 + k2α2) for g = sl3 and g = sp4.
(iv) Use (iii) to compute explicitly the weight multiplicities of the

irreducible representations Lλ for g = sl3 and g = sp4. (You should get
a sum of 6, respectively 8 terms, not particularly appealing, but easily
computable in each special case).

26.5. The Weyl dimension formula. Recall that the Weyl character
formula can be written as a trace formula: for h ∈ h

χλ(e
h) = Tr|Lλ(eh) =

∑
w∈W (−1)`(w)e(w(λ+ρ),h)∏
α∈R+

(e
1
2

(α,h) − e− 1
2

(α,h))
.

The dimension of Lλ should be obtained from this formula when h = 0.
However, we do not immediately get the answer since this formula
gives the character as a ratio of two trigonometric polynomials which
both vanish at h = 0, giving an indeterminacy. We know the limit
exists since the character is a trigonometric polynomial, but we need
to compute it. This can be done as follows.

Let us restrict attention to h = 2thρ where t ∈ R and hρ ∈ h
corresponds to ρ ∈ h∗ using the identification induced by the invariant
form. We have

χλ(e
2thρ) =

∑
w∈W (−1)`(w)e2t(w(λ+ρ),ρ)∏
α∈R+

(et(α,ρ) − e−t(α,ρ))
.

The key idea is that for this specialization the numerator can also be
factored using the denominator formula, which will allow us to resolve
the indeterminacy. Namely, we have

(26.2) χLλ(e2thρ) =

∏
α∈R+

(et(α,λ+ρ) − e−t(α,λ+ρ))∏
α∈R+

(et(α,ρ) − e−t(α,ρ))
.

Now sending t→ 0, we obtain
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Proposition 26.8. We have

dimLλ =

∏
α∈R+

(α, λ+ ρ)∏
α∈R+

(α, ρ)
.

Note that this number is an integer, but this is not obvious without
its interpretation as the dimension of a representation.

Formula (26.2) has a meaning even before taking the limit. Namely,
the eigenvalues of the element 2hρ define a Z-grading on the repre-
sentation Lλ called the principal grading, and we obtain a product
formula for the Poincaré polynomial of this grading.
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