
24. Construction of a semisimple Lie algebra from a Dynkin
diagram

24.1. Serre relations. Let k be an algebraically closed field of char-
acteristic zero. We would like to show that any reduced root system
gives rise to a semisimple Lie algebra over k, and moreover a unique
one. To this end, it suffices to show that any reduced irreducible root
system gives rise to a unique (finite dimensional) simple Lie algebra.

Let g be a finite dimensional simple Lie algebra over k with Cartan
subalgebra h ⊂ g and root system R ⊂ h∗ (which is thus reduced
and irreducible). Fix a polarization of R with the set of simple roots
Π = (α1, ..., αr), and let A = (aij) be the Cartan matrix of R. We have
a decomposition g = n+ ⊕ h ⊕ n−, where n± := ⊕α∈R±gα are the Lie
subalgebras spanned by positive, respectively negative root vectors.
Pick elements ei ∈ gαi , fi ∈ g−αi so that ei, fi, hi = [ei, fi] form an
sl2-triple.

Theorem 24.1. (Serre relations) (i) The elements ei, fi, hi, i = 1, ..., r
generate g.

(ii) These elements satisfy the following relations:

[hi, hj] = 0, [hi, ej] = aijej, [hi, fj] = −aijfj, [ei, fj] = δijhi,

(adei)
1−aijej = 0, (adfi)

1−aijfj = 0, i 6= j.

The last two sets of relations are called Serre relations. Note that
if aij = 0 then the Serre relations just say that [ei, ej] = [fi, fj] = 0.

Proof. (i) We know that hi form a basis of h, so it suffices to show that
ei generate n+ and fi generate n−. We only prove the first statement,
the second being the same for the opposite polarization.

Let n′+ ⊂ n+ be the Lie subalgebra generated by ei. It is clear that
n′+ = ⊕α∈R′+gα where R′+ ⊂ R+. Assume the contrary, that R′+ 6= R+.

Pick α ∈ R+ \ R′+ with the smallest height (it is not a simple root).
Then gα−αi ⊂ n′+, so [ei, gα−αi ] = 0. Let x ∈ g−α be a nonzero element.
We have

([x, ei], y) = (x, [ei, y]) = 0

for any y ∈ gα−αi . Thus [x, ei] = 0 for all i, which implies, by the
representation theory of sl2 (Subsection 11.4), that (α, α∨i ) ≤ 0 for all
i, hence (α, αi) ≤ 0 for all i. This would imply that (α, α) ≤ 0, a
contradiction. This proves (i).

(ii) All the relations except the Serre relations follow from the def-
inition and properties of root systems. So only the Serre relations re-
quire proof. We prove only the relation involving fi, the other one
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being the same for the opposite polarization. Consider the (sl2)i-
submodule Mij of g generated by fj. It is finite dimensional and
we have [hi, fj] = −aijfj, [ei, fj] = 0. Thus by the representation
theory of sl2 (Subsection 11.4) we must have Mij

∼= V−aij . Hence
(adfi)

−aij+1fj = 0. �

24.2. The Serre presentation for semisimple Lie algebras. Now
for any reduced root system R let g(R) be the Lie algebra generated
by ei, fi, hi, i = 1, ..., r, with defining relations being the relations
of Theorem 24.1. Precisely, this means that g(R) is the quotient of
the free Lie algebra FL3r with generators ei, fi, hi modulo the Lie ideal
generated by the differences of the left and right hand sides of these
relations.

Theorem 24.2. (Serre) (i) The Lie subalgebra n+ of g(R) generated
by ei has the Serre relations (adei)

1−aijej = 0 as the defining relations.
Similarly, the Lie subalgebra n− of g(R) generated by fi has the Serre
relations (adfi)

1−aijfj = 0 as the defining relations. In particular,
ei, fi 6= 0 in g(R). Moreover, hi are linearly independent.

(ii) g(R) is a sum of finite dimensional modules over every simple
root subalgebra (sl2)i = (ei, fi, hi).

(iii) g(R) is finite dimensional.
(iv) g(R) is semisimple and has root system R.

Proof. It is easy to see that g(R1 t R2) = g(R1)⊕ g(R2), so it suffices
to prove the theorem for irreducible root systems.

(i) Consider the (in general, infinite dimensional) Lie algebra g̃(R)
generated by ei, fi, hi with the defining relations of Theorem 24.1 with-
out the Serre relations. This Lie algebra is Z-graded, with deg(ei) = 1,
deg(fi) = −1, deg(hi) = 0. Thus we have a decomposition

g̃(R) = ñ+ ⊕ h̃⊕ ñ−,

where ñ+, h̃ and ñ− are Lie subalgebras spanned by elements of positive,
zero and negative degree, respectively. Moreover, it is easy to see that

ñ+ is generated by ei, ñ− is generated by fi, and h̃ is spanned by hi
(indeed, any commutator can be simplified to have only ei, only fi, or
only a single hi).

Lemma 24.3. (i) The Lie algebra ñ+ is free on the generators ei and
ñ− is free on the generators fi.

(ii) hi are linearly independent in h̃ (i.e., h̃ ∼= h).

Proof. (i) We prove only the second statement, the first one being the
same for the opposite polarization. Let h′ be a vector space with basis
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h′i, i = 1, ..., r and consider the Lie algebra a := h′ n FLr, where FLr
is freely generated by f ′1, ..., f

′
r and

[h′i, f
′
j] = −aijf ′j, [h′i, h

′
j] = 0.

Consider the universal enveloping algebra

U = U(a) = k[h′1, ..., h
′
r]n k〈f ′1, ..., f ′r〉,

which as a vector space is naturally identified with the tensor product
k〈f1, ..., fr〉 ⊗ k[h′1, ..., h

′
r], via f ⊗ h 7→ fh (by Proposition 14.4). Now

define an action of g̃(R) on the space U as follows. For P ∈ k[h′1, ..., h
′
r]

and w a word in f ′i of weight −α, we set

hi(w ⊗ P ) = w ⊗ (h′i − α(hi))P, fi(w ⊗ P ) = f ′iw ⊗ P,

ei(f
′
j1
...f ′js ⊗ P ) =

∑
k:jk=i

f ′j1 ....f̂
′
jk
...f ′js ⊗ (h′i − (αjk+1

+ ...+ αjs)(hi))P

(where the hat means that the corresponding factor is omitted). It is
easy to check that this indeed defines an action, i.e., the relations of

g̃(R) are satisfied (check it!). Thus we have a linear map g̃(R) → U
given by x 7→ x(1). The restriction of this map to the Lie subalgebra
ñ− is a map φ : ñ− → FLr which sends every iterated commutator of
fi to itself. This implies that φ is an isomorphism, i.e., ñ− is free.

(ii) The elements hi(1) = h′i are linearly independent, hence so are
hi. �

Now consider the element S+
ij := (adei)

1−aijej in ñ+ and S−ij :=

(adfi)
1−aijfj in ñ−. It is easy to check that [fk, S

+
ij ] = 0 (this follows

easily from the representation theory of sl2, Subsection 11.4,–check it!).
Therefore, setting I+ to be the ideal in the Lie algebra ñ+ generated
by S+

ij , and I− to be the ideal in the Lie algebra ñ− generated by S−ij ,

we see that the ideal of Serre relations in g̃(R) is I+⊕ I−. Lemma 24.3
now implies (i).

(ii) The Serre relations imply that ej generates the representation
V−aij of (sl2)i for j 6= i, and so does fj. Also any element of h generates
V0 or V2 or the sum of the two, and ei, fi generate V2. This implies (ii)
since g(R) is generated by ei, fi, hi, and if x generates a representation
X of (sl2)i and y generates a representation Y then [x, y] generates a
quotient of X ⊗ Y .

(iii) We have g(R) = ⊕α∈Qgα, where gα are the subspaces of g(R) of
weight α, and g0 = h. Let Q+ be the Z+-span of αi. Then gα is zero
unless α ∈ Q+ or −α ∈ Q+, and is finite dimensional for any α.

We will now show that if gα 6= 0 then α ∈ R or α = 0, which
implies (iii). It suffices to consider α ∈ Q+. We prove the statement

131



by induction in the height ht(α) =
∑

i ki where α =
∑

i kiαi. The
base case (height 1) is obvious, so we only need to justify the inductive
step. We have (α, ω∨i ) = ki ≥ 0 for all i. If there is only one i with
ki ≥ 0 then the statement is clear since gmαi = 0 if m ≥ 2. (as
n+ is generated by ei). So assume that there are at least two such
indices i. Since (α, α) > 0, there exists i such that (α, α∨i ) > 0. By
the representation theory of sl2 (Subsection 11.4), gsiα 6= 0. Clearly,
siα = α − (α, α∨i )αi /∈ −Q+ (since kj > 0 for at least two indices j),
so siα ∈ Q+ but has height smaller than α (as (α, α∨i ) > 0). So by the
induction assumption siα ∈ R, which implies α ∈ R. This proves (iii).

(iv) We see that g(R) = h ⊕
⊕

α∈R gα, where gα are 1-dimensional
(this follows from (ii),(iii) since every root can be mapped to a simple
root by a composition of simple reflections). Let I be a nonzero ideal
in g. Then I ⊃ gα for some α 6= 0. Also, by the representation theory
of sl2, Iβ 6= 0 implies Iwβ 6= 0 for all w ∈ W . Thus Iαi 6= 0 for some
i, i.e., ei ∈ I. Hence hi, fi ∈ I. Now let J be the set of indices j for
which ej, fj, hj ∈ I (or, equivalently, just ej ∈ I); we have shown it is
nonempty. Since [hj, ek] = ajkek, we find that if j ∈ J and ajk 6= 0
(i.e., k is connected to j in the Dynkin diagram) then k ∈ J . Since
the Dynkin diagram is connected, J = [1, ..., r] and I = g. Thus g is
simple and clearly has root system R. This proves (iv) and completes
the proof of Serre’s theorem. �

Corollary 24.4. Isomorphism classes of simple Lie algebras over k are
in bijection with Dynkin diagrams An, n ≥ 1, Bn, n ≥ 2, Cn, n ≥ 3,
Dn, n ≥ 4, E6, E7, E8, F4 and G2.
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