
21. Root systems

21.1. Abstract root systems. Let E ∼= Rr be a Euclidean space with
a positive definite inner product.

Definition 21.1. An abstract root system is a finite set R ⊂ E \ 0
satisfying the following axioms:

(R1) R spans E;

(R2) For all α, β ∈ R the number nαβ := 2(α,β)
(α,α)

is an integer;

(R3) If α, β ∈ R then sα(β) := β − nαβα ∈ R.
Elements of R are called roots. The number r = dimE is called the

rank of R.

In particular, taking β = α in R3 yields that R is centrally symmet-
ric, i.e., R = −R. Also note that sα is the reflection with respect to
the hyperplane (α, x) = 0, so R3 just says that R is invariant under
such reflections.

Note also that if R ⊂ E is a root system, E ⊂ E a subspace, and
R′ = R ∩ E then R′ is also a root system inside E ′ = Span(R′) ⊂ E.

For a root α the corresponding coroot α∨ ∈ E∗ is defined by the

formula α∨(x) = 2(α,x)
(α,α)

. Thus α∨(α) = 2, nαβ = α∨(β) and sα(β) =

β − α∨(β)α.

Definition 21.2. A root system R is reduced if for α, cα ∈ R, we
have c = ±1.

Proposition 21.3. If g is a semisimple Lie algebra and h ⊂ g a Car-
tan subalgebra then the corresponding set of roots R is a reduced root
system, and α∨ = hα.

Proof. This follows immediately from Theorem 19.19. �

Example 21.4. 1. The root system of sln is called An−1. In this
case, as we have seen in Example 19.14, the roots are ei − ej, and
sei−ej = (ij), the transposition of the i-th and j-th coordinates.

2. The subset {1, 2,−1,−2} of R is a root system which is not
reduced.

Definition 21.5. Let R1 ⊂ E1, R2 ⊂ E2 be root systems. An isomor-
phism of root systems φ : R1 → R2 is an isomorphism φ : E1 → E2

which maps R1 to R2 and preserves the numbers nαβ.

So an isomorphism does not have to preserve the inner product, e.g.
it may rescale it.
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21.2. The Weyl group.

Definition 21.6. The Weyl group of a root system R is the group
of automorphisms of E generated by sα.

Proposition 21.7. W is a finite subgroup of O(E) which preserves R.

Proof. Since sα are orthogonal reflections, W ⊂ O(E). By R3, sα
preserves R. By R1 an element of W is determined by its action on R,
hence W is finite. �

Example 21.8. For the root system An−1, W = Sn, the symmetric
group. Note that for n ≥ 3, the automorphism x 7→ −x of R is not in
W , so W is, in general, a proper subgroup of Aut(R).

21.3. Root systems of rank 2. If α, β are linearly independent roots
in R and E ′ ⊂ E is spanned by α, β then R′ = R∩E ′ is a root system
in E ′ of rank 2. So to classify reduced root systems, it is important to
classify reduced root systems of rank 2 first.

Theorem 21.9. Let R be a reduced root system and α, β ∈ R be two
linearly independent roots with |α| ≥ |β|. Let φ be the angle between α
and β. Then we have one of the following possibilities:

(1) φ = π/2, nαβ = nβα = 0;
(2a) φ = 2π/3, |α|2 = |β|2, nαβ = nβα = −1;
(2b) φ = π/3, |α|2 = |β|2, nαβ = nβα = 1;
(3a) φ = 3π/4, |α|2 = 2|β|2, nαβ = −1, nβα = −2;
(3b) φ = π/4, |α|2 = 2|β|2, nαβ = 1, nβα = 2;
(4a) φ = 5π/6, |α|2 = 3|β|2, nαβ = −1, nβα = −3;
(4b) φ = π/6, |α|2 = 3|β|2, nαβ = 1, nβα = 3.

Proof. We have (α, β) = 2|α| · |β| cosφ, so nαβ = 2 |β||α| cosφ. Thus

nαβnβα = 4 cos2 φ. Hence this number can only take values 0, 1, 2, 3 (as

it is an integer by R2) and
nαβ
nβα

= |α|2
|β|2 if nαβ 6= 0. The rest is obtained

by analysis of each case. �

In fact, all these possibilities are realized. Namely, we have root
systems A1 × A1, A2, B2 = C2 (the root system of the Lie algebras
sp4 and so5, which are in fact isomorphic, consisting of the vertices
and midpoints of edges of a square), and G2, generated by α, β with
(α, α) = 6, (β, β) = 2, (α, β) = −3, and roots being ±α,±β, ±(α+β),
±(α + 2β), ±(α + 3β), ±(2α + 3β).

Theorem 21.10. Any reduced rank 2 root system R is of the form
A1 × A1, A2, B2 or G2.
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Proof. Pick independent roots α, β ∈ R such that the angle φ is as
large as possible. Then φ ≥ π/2 (otherwise can replace α with −α), so
we are in one of the cases 1, 2a, 3a, 4a. Now the statement follows by
inspection of each case, giving A1×A1, A2, B2 and G2 respectively. �

Corollary 21.11. If α, β ∈ R are independent roots with (α, β) < 0
then α + β ∈ R.

Proof. This is easy to see from the classification of rank 2 root systems.
�

The root systems of rank 2 are shown in the following picture.

21.4. Positive and simple roots. Let R be a reduced root system
and t ∈ E∗ be such that t(α) 6= 0 for any α ∈ R. We say that a root is
positive (with respect to t) if t(α) > 0 and negative if t(α) < 0. The
set of positive roots is denoted by R+ and of negative ones by R−, so
R+ = −R− and R = R+ ∪ R− (disjoint union). This decomposition is
called a polarization of R; it depends on the choice of t.

Example 21.12. Let R be of type An−1. Then for t = (t1, ..., tn)
we have t(α) 6= 0 for all α iff ti 6= tj for any i, j. E.g. suppose
t1 > t2 > ... > tn, then we have ei − ej ∈ R+ iff i < j. We see
that polarizations are in bijection with permutations in Sn, i.e., with
elements of the Weyl group, which acts simply transitively on them.
We will see that this is, in fact, the case for any reduced root system.

Definition 21.13. A root α ∈ R+ is simple if it is not a sum of two
other positive roots.

Lemma 21.14. Every positive root is a sum of simple roots.

Proof. If α is not simple then α = β + γ where β, γ ∈ R+. We have
t(α) = t(β) + t(γ), so t(β), t(γ) < t(α). If β or γ is not simple, we can
continue this process, and it will terminate since t has finitely many
values on R. �

Lemma 21.15. If α, β ∈ R+ are simple roots then (α, β) ≤ 0.
114



Proof. Assume (α, β) > 0. Then (−α, β) < 0 so by Lemma 21.11
γ := β − α is a root. If γ is positive then β = α+ γ is not simple. If γ
is negative then −γ is positive so α = β + (−γ) is not simple. �

Theorem 21.16. The set Π ⊂ R+ of simple roots is a basis of E.

Proof. We will use the following linear algebra lemma:

Lemma 21.17. Let vi be vectors in a Euclidean space E such that
(vi, vj) ≤ 0 when i 6= j and t(vi) > 0 for some t ∈ E∗. Then vi are
linearly independent.

Proof. Suppose we have a nontrivial relation∑
i∈I

civi =
∑
i∈J

civi

where I, J are disjoint and ci > 0 (clearly, every nontrivial relation can
be written in this form). Evaluating t on this relation, we deduce that
both sides are nonzero. Now let us compute the square of the left hand
side:

0 < |
∑
i∈I

civi|2 = (
∑
i∈I

civi,
∑
j∈J

cjvj) ≤ 0.

This is a contradiction. �

Now the result follows from Lemma 21.15 and Lemma 21.17. �

Thus the set Π of simple roots has r elements: Π = (α1, ..., αr).

Example 21.18. Let us describe simple roots for classical root sys-
tems. Suppose the polarization is given by t = (t1, ..., tn) with decreas-
ing coordinates. Then:

1. For type An−1, i.e., g = sln, the simple roots are αi := ei − ei+1,
1 ≤ i ≤ n− 1.

2. For type Cn, i.e., g = sp2n, the simple roots are

α1 = e1 − e2, ..., αn−1 = en−1 − en, αn = 2en.

3. For type Bn, i.e., g = so2n+1, we have the same story as for Cn
except αn = en rather than 2en. Thus the simple roots are

α1 = e1 − e2, ..., αn−1 = en−1 − en, αn = en.

4. For type Dn, i.e., g = so2n, the simple roots are

α1 = e1−e2, ..., αn−2 = en−2−en−1, αn−1 = en−1−en, αn = en−1+en.

We thus obtain
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Corollary 21.19. Any root α ∈ R can be uniquely written as α =∑r
i=1 niαi, where ni ∈ Z. If α is positive then ni ≥ 0 for all i and if α

is negative then ni ≤ 0 for all i.

For a positive root α, its height h(α) is the number
∑
ni. So simple

roots are the roots of height 1, and the height of ei − ej in R = An−1

is j − i.

21.5. Dual root system. For a root system R, the set R∨ ⊂ E∗ of
α∨ for all α ∈ R is also a root system, such that (R∨)∨ = R. It is
called the dual root system to R. For example, Bn is dual to Cn,
while An−1, Dn and G2 are self-dual.

Moreover, it is easy to see that any polarization of R gives rise to
a polarization of R∨ (using the image t∨ of t under the isomorphism
E → E∗ induced by the inner product), and the corresponding system
Π∨ of simple roots consists of α∨i for αi ∈ Π.

21.6. Root and weight lattices. Recall that a lattice in a real vector
space E is a subgroup Q ⊂ E generated by a basis of E. Of course,
every lattice is conjugate to Zn ⊂ Rn by an element of GLn(R). Also
recall that for a lattice Q ⊂ E the dual lattice Q∗ ⊂ E∗ is the set of
f ∈ E∗ such that f(v) ∈ Z for all v ∈ Q. If Q is generated by a basis
ei of E then Q∗ is generated by the dual basis e∗i .

In particular, for a root system R we can define the root lattice
Q ⊂ E, which is generated by the simple roots αi with respect to some
polarization of R. Since Q is also generated by all roots in R, it is
independent on the choice of the polarization. Similarly, we can define
the coroot lattice Q∨ ⊂ E∗ generated by α∨, α ∈ R, which is just the
root lattice of R∨.

Also we define the weight lattice P ⊂ E to be the dual lattice to
Q∨: P = (Q∨)∗, and the coweight lattice P∨ ⊂ E∗ to be the dual
lattice to Q: P∨ = Q∗, so P∨ is the weight lattice of R∨. Thus

P = {λ ∈ E : (λ, α∨) ∈ Z ∀α ∈ R}, P∨ = {λ ∈ E∗ : (λ, α) ∈ Z ∀α ∈ R}.
Since for α, β ∈ R we have (α∨, β) = nαβ ∈ Z, we have Q ⊂ P ,

Q∨ ⊂ P∨.
Given a system of simple roots Π = {α1, ..., αr}, we define funda-

mental coweights ω∨i to be the dual basis to αi and fundamental
weights ωi to be the dual basis to α∨i : (ωi, α

∨
j ) = (ω∨i , αj) = δij. Thus

P is generated by ωi and P∨ by ω∨i .

Example 21.20. Let R be of type A1. Then (α, α∨) = 2 for the unique
positive root α, so ω = 1

2
α, thus P/Q = Z/2. More generally, if R is of

type An−1 and we identify Q ∼= Q∨, P ∼= P∨, then P becomes the set of
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λ = (λ1, ..., λn) ∈ Rn such that
∑

i λi = 0 and λi − λj ∈ Z. So we have
a homomorphism φ : P → R/Z given by φ(λ) = λi mod Z (for any i).
Since

∑
i λi = 0, we have φ : P → Z/n, and Kerφ = Q (integer vectors

with sum zero). Also it is easy to see that φ is surjective (we may take
λi = k

n
for i 6= n and λn = k

n
− k, then φ(λ) = k

n
). Thus P/Q ∼= Z/n.
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