21. Root systems

21.1. Abstract root systems. Let $E \cong \mathbb{R}^r$ be a Euclidean space with a positive definite inner product.

Definition 21.1. An abstract root system is a finite set $R \subset E \setminus 0$ satisfying the following axioms:

(R1) R spans E;

(R2) For all $\alpha, \beta \in R$ the number $n_{\alpha\beta} := \frac{2(\alpha,\beta)}{(\alpha,\alpha)}$ is an integer;

(R3) If $\alpha, \beta \in R$ then $s_{\alpha}(\beta) := \beta - n_{\alpha\beta}\alpha \in R$.

Elements of R are called **roots**. The number $r = \dim E$ is called the **rank** of R.

In particular, taking $\beta = \alpha$ in R3 yields that R is centrally symmetric, i.e., R = -R. Also note that s_{α} is the reflection with respect to the hyperplane $(\alpha, x) = 0$, so R3 just says that R is invariant under such reflections.

Note also that if $R \subset E$ is a root system, $\overline{E} \subset E$ a subspace, and $R' = R \cap \overline{E}$ then R' is also a root system inside $E' = \text{Span}(R') \subset \overline{E}$.

For a root α the corresponding **coroot** $\alpha^{\vee} \in E^*$ is defined by the formula $\alpha^{\vee}(x) = \frac{2(\alpha, x)}{(\alpha, \alpha)}$. Thus $\alpha^{\vee}(\alpha) = 2$, $n_{\alpha\beta} = \alpha^{\vee}(\beta)$ and $s_{\alpha}(\beta) = \beta - \alpha^{\vee}(\beta)\alpha$.

Definition 21.2. A root system R is **reduced** if for $\alpha, c\alpha \in R$, we have $c = \pm 1$.

Proposition 21.3. If \mathfrak{g} is a semisimple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra then the corresponding set of roots R is a reduced root system, and $\alpha^{\vee} = h_{\alpha}$.

Proof. This follows immediately from Theorem 19.19.

Example 21.4. 1. The root system of \mathfrak{sl}_n is called A_{n-1} . In this case, as we have seen in Example 19.14, the roots are $\mathbf{e}_i - \mathbf{e}_j$, and $s_{\mathbf{e}_i - \mathbf{e}_j} = (ij)$, the transposition of the *i*-th and *j*-th coordinates.

2. The subset $\{1, 2, -1, -2\}$ of \mathbb{R} is a root system which is not reduced.

Definition 21.5. Let $R_1 \subset E_1, R_2 \subset E_2$ be root systems. An **isomorphism of root systems** $\phi : R_1 \to R_2$ is an isomorphism $\phi : E_1 \to E_2$ which maps R_1 to R_2 and preserves the numbers $n_{\alpha\beta}$.

So an isomorphism does not have to preserve the inner product, e.g. it may rescale it.

21.2. The Weyl group.

Definition 21.6. The Weyl group of a root system R is the group of automorphisms of E generated by s_{α} .

Proposition 21.7. W is a finite subgroup of O(E) which preserves R.

Proof. Since s_{α} are orthogonal reflections, $W \subset O(E)$. By R3, s_{α} preserves R. By R1 an element of W is determined by its action on R, hence W is finite.

Example 21.8. For the root system A_{n-1} , $W = S_n$, the symmetric group. Note that for $n \ge 3$, the automorphism $x \mapsto -x$ of R is not in W, so W is, in general, a proper subgroup of Aut(R).

21.3. Root systems of rank 2. If α, β are linearly independent roots in R and $E' \subset E$ is spanned by α, β then $R' = R \cap E'$ is a root system in E' of rank 2. So to classify reduced root systems, it is important to classify reduced root systems of rank 2 first.

Theorem 21.9. Let R be a reduced root system and $\alpha, \beta \in R$ be two linearly independent roots with $|\alpha| \ge |\beta|$. Let ϕ be the angle between α and β . Then we have one of the following possibilities:

 $\begin{array}{l} (1) \ \phi = \pi/2, \ n_{\alpha\beta} = n_{\beta\alpha} = 0; \\ (2a) \ \phi = 2\pi/3, \ |\alpha|^2 = |\beta|^2, \ n_{\alpha\beta} = n_{\beta\alpha} = -1; \\ (2b) \ \phi = \pi/3, \ |\alpha|^2 = |\beta|^2, \ n_{\alpha\beta} = n_{\beta\alpha} = 1; \\ (3a) \ \phi = 3\pi/4, \ |\alpha|^2 = 2|\beta|^2, \ n_{\alpha\beta} = -1, \ n_{\beta\alpha} = -2; \\ (3b) \ \phi = \pi/4, \ |\alpha|^2 = 2|\beta|^2, \ n_{\alpha\beta} = 1, \ n_{\beta\alpha} = 2; \\ (4a) \ \phi = 5\pi/6, \ |\alpha|^2 = 3|\beta|^2, \ n_{\alpha\beta} = -1, \ n_{\beta\alpha} = -3; \\ (4b) \ \phi = \pi/6, \ |\alpha|^2 = 3|\beta|^2, \ n_{\alpha\beta} = 1, \ n_{\beta\alpha} = 3. \end{array}$

Proof. We have $(\alpha, \beta) = 2|\alpha| \cdot |\beta| \cos \phi$, so $n_{\alpha\beta} = 2\frac{|\beta|}{|\alpha|} \cos \phi$. Thus $n_{\alpha\beta}n_{\beta\alpha} = 4\cos^2 \phi$. Hence this number can only take values 0, 1, 2, 3 (as it is an integer by R2) and $\frac{n_{\alpha\beta}}{n_{\beta\alpha}} = \frac{|\alpha|^2}{|\beta|^2}$ if $n_{\alpha\beta} \neq 0$. The rest is obtained by analysis of each case.

In fact, all these possibilities are realized. Namely, we have root systems $A_1 \times A_1$, A_2 , $B_2 = C_2$ (the root system of the Lie algebras \mathfrak{sp}_4 and \mathfrak{so}_5 , which are in fact isomorphic, consisting of the vertices and midpoints of edges of a square), and G_2 , generated by α, β with $(\alpha, \alpha) = 6, (\beta, \beta) = 2, (\alpha, \beta) = -3$, and roots being $\pm \alpha, \pm \beta, \pm (\alpha + \beta), \pm (\alpha + 2\beta), \pm (\alpha + 3\beta), \pm (2\alpha + 3\beta)$.

Theorem 21.10. Any reduced rank 2 root system R is of the form $A_1 \times A_1$, A_2 , B_2 or G_2 .

Proof. Pick independent roots $\alpha, \beta \in R$ such that the angle ϕ is as large as possible. Then $\phi \geq \pi/2$ (otherwise can replace α with $-\alpha$), so we are in one of the cases 1, 2a, 3a, 4a. Now the statement follows by inspection of each case, giving $A_1 \times A_1$, A_2 , B_2 and G_2 respectively. \Box

Corollary 21.11. If $\alpha, \beta \in R$ are independent roots with $(\alpha, \beta) < 0$ then $\alpha + \beta \in R$.

Proof. This is easy to see from the classification of rank 2 root systems. \Box

The root systems of rank 2 are shown in the following picture.

21.4. **Positive and simple roots.** Let R be a reduced root system and $t \in E^*$ be such that $t(\alpha) \neq 0$ for any $\alpha \in R$. We say that a root is **positive** (with respect to t) if $t(\alpha) > 0$ and **negative** if $t(\alpha) < 0$. The set of positive roots is denoted by R_+ and of negative ones by R_- , so $R_+ = -R_-$ and $R = R_+ \cup R_-$ (disjoint union). This decomposition is called a **polarization** of R; it depends on the choice of t.

Example 21.12. Let R be of type A_{n-1} . Then for $t = (t_1, ..., t_n)$ we have $t(\alpha) \neq 0$ for all α iff $t_i \neq t_j$ for any i, j. E.g. suppose $t_1 > t_2 > ... > t_n$, then we have $\mathbf{e}_i - \mathbf{e}_j \in R_+$ iff i < j. We see that polarizations are in bijection with permutations in S_n , i.e., with elements of the Weyl group, which acts simply transitively on them. We will see that this is, in fact, the case for any reduced root system.

Definition 21.13. A root $\alpha \in R_+$ is simple if it is not a sum of two other positive roots.

Lemma 21.14. Every positive root is a sum of simple roots.

Proof. If α is not simple then $\alpha = \beta + \gamma$ where $\beta, \gamma \in R_+$. We have $t(\alpha) = t(\beta) + t(\gamma)$, so $t(\beta), t(\gamma) < t(\alpha)$. If β or γ is not simple, we can continue this process, and it will terminate since t has finitely many values on R.

Lemma 21.15. If $\alpha, \beta \in R_+$ are simple roots then $(\alpha, \beta) \leq 0$.

Proof. Assume $(\alpha, \beta) > 0$. Then $(-\alpha, \beta) < 0$ so by Lemma 21.11 $\gamma := \beta - \alpha$ is a root. If γ is positive then $\beta = \alpha + \gamma$ is not simple. If γ is negative then $-\gamma$ is positive so $\alpha = \beta + (-\gamma)$ is not simple. \Box

Theorem 21.16. The set $\Pi \subset R_+$ of simple roots is a basis of E.

Proof. We will use the following linear algebra lemma:

Lemma 21.17. Let v_i be vectors in a Euclidean space E such that $(v_i, v_j) \leq 0$ when $i \neq j$ and $t(v_i) > 0$ for some $t \in E^*$. Then v_i are linearly independent.

Proof. Suppose we have a nontrivial relation

$$\sum_{i \in I} c_i v_i = \sum_{i \in J} c_i v_i$$

where I, J are disjoint and $c_i > 0$ (clearly, every nontrivial relation can be written in this form). Evaluating t on this relation, we deduce that both sides are nonzero. Now let us compute the square of the left hand side:

$$0 < |\sum_{i \in I} c_i v_i|^2 = (\sum_{i \in I} c_i v_i, \sum_{j \in J} c_j v_j) \le 0.$$

This is a contradiction.

Now the result follows from Lemma 21.15 and Lemma 21.17. \Box

Thus the set Π of simple roots has r elements: $\Pi = (\alpha_1, ..., \alpha_r)$.

Example 21.18. Let us describe simple roots for classical root systems. Suppose the polarization is given by $t = (t_1, ..., t_n)$ with decreasing coordinates. Then:

1. For type A_{n-1} , i.e., $\mathfrak{g} = \mathfrak{sl}_n$, the simple roots are $\alpha_i := \mathbf{e}_i - \mathbf{e}_{i+1}$, $1 \le i \le n-1$.

2. For type C_n , i.e., $\mathfrak{g} = \mathfrak{sp}_{2n}$, the simple roots are

$$\alpha_1 = \mathbf{e}_1 - \mathbf{e}_2, \dots, \ \alpha_{n-1} = \mathbf{e}_{n-1} - \mathbf{e}_n, \ \alpha_n = 2\mathbf{e}_n.$$

3. For type B_n , i.e., $\mathfrak{g} = \mathfrak{so}_{2n+1}$, we have the same story as for C_n except $\alpha_n = \mathbf{e}_n$ rather than $2\mathbf{e}_n$. Thus the simple roots are

$$\alpha_1 = \mathbf{e}_1 - \mathbf{e}_2, ..., \ \alpha_{n-1} = \mathbf{e}_{n-1} - \mathbf{e}_n, \ \alpha_n = \mathbf{e}_n.$$

4. For type D_n , i.e., $\mathfrak{g} = \mathfrak{so}_{2n}$, the simple roots are

$$\alpha_1 = \mathbf{e}_1 - \mathbf{e}_2, ..., \ \alpha_{n-2} = \mathbf{e}_{n-2} - \mathbf{e}_{n-1}, \ \alpha_{n-1} = \mathbf{e}_{n-1} - \mathbf{e}_n, \ \alpha_n = \mathbf{e}_{n-1} + \mathbf{e}_n.$$

We thus obtain

Corollary 21.19. Any root $\alpha \in R$ can be uniquely written as $\alpha = \sum_{i=1}^{r} n_i \alpha_i$, where $n_i \in \mathbb{Z}$. If α is positive then $n_i \geq 0$ for all i and if α is negative then $n_i \leq 0$ for all i.

For a positive root α , its **height** $h(\alpha)$ is the number $\sum n_i$. So simple roots are the roots of height 1, and the height of $\mathbf{e}_i - \mathbf{e}_j$ in $R = A_{n-1}$ is j - i.

21.5. **Dual root system.** For a root system R, the set $R^{\vee} \subset E^*$ of α^{\vee} for all $\alpha \in R$ is also a root system, such that $(R^{\vee})^{\vee} = R$. It is called the **dual root system** to R. For example, B_n is dual to C_n , while A_{n-1} , D_n and G_2 are self-dual.

Moreover, it is easy to see that any polarization of R gives rise to a polarization of R^{\vee} (using the image t^{\vee} of t under the isomorphism $E \to E^*$ induced by the inner product), and the corresponding system Π^{\vee} of simple roots consists of α_i^{\vee} for $\alpha_i \in \Pi$.

21.6. Root and weight lattices. Recall that a lattice in a real vector space E is a subgroup $Q \subset E$ generated by a basis of E. Of course, every lattice is conjugate to $\mathbb{Z}^n \subset \mathbb{R}^n$ by an element of $GL_n(\mathbb{R})$. Also recall that for a lattice $Q \subset E$ the **dual lattice** $Q^* \subset E^*$ is the set of $f \in E^*$ such that $f(v) \in \mathbb{Z}$ for all $v \in Q$. If Q is generated by a basis \mathbf{e}_i of E then Q^* is generated by the dual basis \mathbf{e}_i^* .

In particular, for a root system R we can define the **root lattice** $Q \subset E$, which is generated by the simple roots α_i with respect to some polarization of R. Since Q is also generated by all roots in R, it is independent on the choice of the polarization. Similarly, we can define the **coroot lattice** $Q^{\vee} \subset E^*$ generated by $\alpha^{\vee}, \alpha \in R$, which is just the root lattice of R^{\vee} .

Also we define the weight lattice $P \subset E$ to be the dual lattice to Q^{\vee} : $P = (Q^{\vee})^*$, and the coweight lattice $P^{\vee} \subset E^*$ to be the dual lattice to Q: $P^{\vee} = Q^*$, so P^{\vee} is the weight lattice of R^{\vee} . Thus

 $P = \{\lambda \in E : (\lambda, \alpha^{\vee}) \in \mathbb{Z} \, \forall \alpha \in R\}, \ P^{\vee} = \{\lambda \in E^* : (\lambda, \alpha) \in \mathbb{Z} \, \forall \alpha \in R\}.$ Since for $\alpha, \beta \in R$ we have $(\alpha^{\vee}, \beta) = n_{\alpha\beta} \in \mathbb{Z}$, we have $Q \subset P$, $Q^{\vee} \subset P^{\vee}.$

Given a system of simple roots $\Pi = \{\alpha_1, ..., \alpha_r\}$, we define **funda**mental coweights ω_i^{\vee} to be the dual basis to α_i and **fundamental** weights ω_i to be the dual basis to α_i^{\vee} : $(\omega_i, \alpha_j^{\vee}) = (\omega_i^{\vee}, \alpha_j) = \delta_{ij}$. Thus P is generated by ω_i and P^{\vee} by ω_i^{\vee} .

Example 21.20. Let R be of type A_1 . Then $(\alpha, \alpha^{\vee}) = 2$ for the unique positive root α , so $\omega = \frac{1}{2}\alpha$, thus $P/Q = \mathbb{Z}/2$. More generally, if R is of type A_{n-1} and we identify $Q \cong Q^{\vee}, P \cong P^{\vee}$, then P becomes the set of

 $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$ such that $\sum_i \lambda_i = 0$ and $\lambda_i - \lambda_j \in \mathbb{Z}$. So we have a homomorphism $\phi : P \to \mathbb{R}/\mathbb{Z}$ given by $\phi(\lambda) = \lambda_i \mod \mathbb{Z}$ (for any *i*). Since $\sum_i \lambda_i = 0$, we have $\phi : P \to \mathbb{Z}/n$, and $\operatorname{Ker}\phi = Q$ (integer vectors with sum zero). Also it is easy to see that ϕ is surjective (we may take $\lambda_i = \frac{k}{n}$ for $i \neq n$ and $\lambda_n = \frac{k}{n} - k$, then $\phi(\lambda) = \frac{k}{n}$). Thus $P/Q \cong \mathbb{Z}/n$. 18.745 Lie Groups and Lie Algebras I Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.