
16. Semisimple and reductive Lie algebras, the Cartan
criteria

16.1. Semisimple and reductive Lie algebras, the radical. Let
g be a finite dimensional Lie algebra over a field k.

Proposition 16.1. The sum of all solvable ideals of g is a solvable
ideal.

Definition 16.2. This ideal is called the radical of g and denoted
rad(g).

Proof. Let I, J be solvable ideals of g. Then I + J ⊂ g is an ideal, and
(I +J)/I = J/(I ∩J) is solvable, so I +J is solvable. Thus the sum of
finitely many solvable ideals is solvable. Hence the sum of all solvable
ideals in g is a solvable ideal, as desired. �

Definition 16.3. (i) g is called semisimple if rad(g) = 0, i.e., g does
not contain nonzero solvable ideals.

(ii) A non-abelian g is called simple if it contains no ideals other
than 0, g. In other words, a non-abelian g is simple if its adjoint rep-
resentation is irreducible (=simple).

Thus if g is both solvable and semisimple then g = 0.

Proposition 16.4. (i) We have rad(g ⊕ h) = rad(g) ⊕ rad(h). In
particular, the direct sum of semisimple Lie algebras is semisimple.

(ii) A simple Lie algebra is semisimple. Thus a direct sum of simple
Lie algebras is semisimple.

Proof. (i) The images of rad(g ⊕ h) in g and in h are solvable, hence
contained in rad(g), respectively rad(h). Thus

rad(g⊕ h) ⊂ rad(g)⊕ rad(h).

But rad(g)⊕ rad(h) is a solvable ideal in g⊕ h, so

rad(g⊕ h) = rad(g)⊕ rad(h).

(ii) The only nonzero ideal in g is g, and [g, g] = g since g is not
abelian. Hence g is not solvable. Thus g is semisimple. �

Example 16.5. The Lie algebra sl2(k) is simple if char(k) 6= 2. Like-
wise, so3(k) is simple.

Theorem 16.6. (weak Levi decomposition) The Lie algebra gss =
g/rad(g) is semisimple. Thus any g can be included in an exact se-
quence

0→ rad(g)→ g→ gss → 0,
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where rad(g) is a solvable ideal and gss is semisimple. Moreover, if
h ⊂ g is a solvable ideal such that g/h is semisimple then h = rad(g).

Proof. Let I ⊂ gss be a solvable ideal, and let Ĩ be its preimage in g.

Then Ĩ is a solvable ideal in g. Thus Ĩ = rad(g) and I = 0. �

In fact, in characteristic zero there is a stronger statement, which
says that the extension in Theorem 16.6 splits. Namely, given a Lie
algebra h and another Lie algebra a acting on h by derivations, we may
form the semidirect product Lie algebra a n h which is a ⊕ h as a
vector space with commutator defined by

[(a1, h1), (a2, h2)] = ([a1, a2], a1 ◦ h2 − a2 ◦ h1 + [h1, h2]).

Note that a special case of this construction has already appeared in
Example 15.23.

Theorem 16.7. (Levi decomposition) If char(k) = 0 then we have g ∼=
rad(g)⊕ gss as vector spaces, where gss ⊂ g is a semisimple subalgebra
(but not necessarily an ideal); i.e., g is isomorphic to the semidirect
product gss n rad(g). In other words, the projection p : g→ gss admits
an (in general, non-unique) splitting q : gss → g, i.e., a Lie algebra
map such that p ◦ q = Id.

Theorem 16.7 will be proved in Subsection 48.2.

Example 16.8. Let G be the group of motions of the Euclidean space
R3 (generated by rotations and translations). Then G = SO3(R)nR3,
so g = LieG = so3(R) n R3, hence rad(g) = R3 (abelian Lie algebra)
and gss = so3(R).

Proposition 16.9. Let char(k) = 0, k algebraically closed, and V be
an irreducible representation of g. Then rad(g) acts on V by scalars,
and [g, rad(g)] by zero.

Proof. By Lie’s theorem, there is a nonzero v ∈ V and λ ∈ rad(g)∗

such that av = λ(a)v for a ∈ rad(g). Let x ∈ g and gx ⊂ g be the Lie
subalgebra spanned by rad(g) and x. Let W be the span of xnv for
n ≥ 0. By Lemma 15.18(i), W is a gx-subrepresentation of V on which
a ∈ rad(g) has the only eigenvalue λ(a). Thus by Lemma 15.18(iii),
for a ∈ rad(g) we have λ([x, a]) = 0, so the λ-eigenspace Vλ of rad(g)
in V is a g-subrepresentation of V , which implies that Vλ = V since V
is irreducible. �

Definition 16.10. g is called reductive if rad(g) coincides with the
center z(g) of g.
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In other words, g is reductive if [g, rad(g)] = 0.
The Levi decomposition theorem implies that a reductive Lie algebra

in characteristic zero is a direct sum of a semisimple Lie algebra and
an abelian Lie algebra (its center). We will also prove this in Corollary
18.8.

16.2. Invariant inner products. Let B be a bilinear form on a Lie
algebra g. Recall that B is invariant if B([x, y], z) = B(x, [y, z]) for
any x, y, z ∈ g.

Example 16.11. If ρ : g→ gl(V ) is a finite dimensional representation
of g then the form

BV (x, y) := Tr(ρ(x)ρ(y))

is an invariant symmetric bilinear form on g. Indeed, the symmetry is
obvious and

BV ([x, y], z) = BV (x, [y, z]) = Tr|V (ρ(x)ρ(y)ρ(z)− ρ(x)ρ(z)ρ(y)).

Proposition 16.12. If B is a symmetric invariant bilinear form on g
and I ⊂ g is an ideal then the orthogonal complement I⊥ ⊂ g is also
an ideal. In particular, g⊥ = Ker(B) is an ideal in g.

Exercise 16.13. Prove Proposition 16.12.

Proposition 16.14. If BV is nondegenerate for some V then g is
reductive.

Proof. Let V1, ..., Vn be the simple composition factors of V ; i.e., V has
a filtration by subrepresentations such that FiV/Fi−1V = Vi, F0V = 0
and FnV = V . Then BV (x, y) =

∑
iBVi(x, y). Now, if x ∈ [g, rad(g)]

then x|Vi = 0, so BVi(x, y) = 0 for all y ∈ g, hence BV (x, y) = 0. �

Example 16.15. It is clear that if g = gln(k) and V = kn then
the form BV is nondegenerate, as BV (Eij, Ekl) = δilδjk. Thus g is
reductive. Also if n is not divisible by the characteristic of k then
sln(k) is semisimple, since it is orthogonal to scalars under BV (hence
reductive), and has trivial center. In fact, it is easy to show that in
this case sln(k) is a simple Lie algebra (another way to see that it is
semisimple).

In fact, we have the following proposition.

Proposition 16.16. All classical Lie algebras over K = R and C are
reductive.

Proof. Let g be a classical Lie algebra and V its standard matrix repre-
sentation. It is easy to check that the form BV on g is nondegenerate,
which implies that g is reductive. �
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For example, the Lie algebras son(K), sp2n(K), su(p, q) have trivial
center and therefore are semisimple.

16.3. The Killing form and the Cartan criteria.

Definition 16.17. The Killing form of a Lie algebra g is the form
Bg(x, y) = Tr(adx · ady).

The Killing form is denoted by Kg(x, y) or shortly by K(x, y).

Theorem 16.18. (Cartan criterion of solvability) A Lie algebra g over
a field k of characteristic zero is solvable if and only if [g, g] ⊂ Ker(K).

Theorem 16.19. (Cartan criterion of semisimplicity) A Lie algebra
g over a field k of characteristic zero is semisimple if and only if its
Killing form is nondegenerate.

Theorems 16.18 and 16.19 will be proved in the next section.

Corollary 16.20. On a simple Lie algebra, the Killing form is the
unique up to scaling invariant bilinear form.

Proof. Let g be a simple Lie algebra. Then the Killing form is a nonzero
(in fact, nondegenerate) invariant bilinear form on g. Also any invari-
ant bilinear form B on g can be viewed as a homomorphism of rep-
resentations B : g → g∗. Thus by Schur’s lemma it is unique up to
scaling. �

16.4. Jordan decomposition. To prove the Cartan criteria, we will
use the Jordan decomposition of a square matrix. Let us recall it.

Proposition 16.21. A square matrix A ∈ glN(k) over a field k of
characteristic zero can be uniquely written as As + An, where As ∈
glN(k) is semisimple (i.e. diagonalizes over the algebraic closure of
k) and An ∈ glN(k) is nilpotent in such a way that AsAn = AnAs.
Moreover, As = P (A) for some P ∈ k[x].

Proof. By the Chinese remainder theorem, there exists a polynomial
P ∈ k[x] such that for every eigenvalue λ of A we have P (x) = λ
modulo (x− λ)N , i.e.,

P (x)− λ = (x− λ)NQλ(x)

for some polynomial Qλ. Then on the generalized eigenspace V (λ) for
A, we have

P (A)− λ = (A− λ)NQλ(A) = 0,
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so As := P (A) is semisimple and An = A − P (A) is nilpotent, with
AnAs = AsAn. If A = A′s + A′n is another such decomposition then
A′s, A

′
n commute with A, hence with As and An. Also we have

As − A′s = A′n − An.
Thus this matrix is both semisimple and nilpotent, so it is zero. Finally,
since As, An are unique, they are invariant under the Galois group of
k over k and therefore have entries in k. �

Remark 16.22. 1. If k is algebraically closed, then A admits a basis
in which it is upper triangular, and As is the diagonal part while An is
the off-diagonal part of A.

2. Proposition 16.21 holds with the same proof in characteristic p if
the field k is perfect, i.e., the Frobenius map x → xp is surjective on
k. However, if k is not perfect, the proof fails: the fact that As, An
are Galois invariant does not imply that their entries are in k. Also
the statement fails: if k = Fp(t) and Aei = ei+1 for i = 1, .., p− 1 while
Aep = te1 then A has only one eigenvalue t1/p, so As = t1/p · Id, i.e.,
does not have entries in k.
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