
13. The Poincaré-Birkhoff-Witt theorem

13.1. The statement of the Poincaré-Birkhoff-Witt theorem.
Let g be a Lie algebra over a field k. Recall from Example 12.8 that
we have a surjective algebra homomorphism

φ : Sg→ grU(g).

Theorem 13.1. (Poincaré-Birkhoff-Witt theorem) The homomorphism
φ is an isomorphism.

We will prove Theorem 13.1 in Subsection 13.2. Now let us discuss
its reformulation in terms of a basis and corollaries.

Given a basis {xi} of g, fix an ordering on this basis and consider
ordered monomials

∏
i x

ni
i , where the product is ordered according to

the ordering of the basis. The statement that φ is surjective is equiv-
alent to saying that ordered monomials span U(g). This is also easy
to see directly: any monomial can be ordered using the commutation
relations at the cost of an error of lower degree, so proceeding recur-
sively, we can write any monomial as a linear combination of ordered
ones. Thus the PBW theorem can be formulated as follows:

Theorem 13.2. The ordered monomials are linearly independent, hence
form a basis of U(g).

For instance, if k = R or C and g = Lie(G) where G is a Lie group,
this theorem is easy to deduce from Exercise 12.12 (do this!).

Corollary 13.3. The map ρ : g→ U(g) is injective. Thus g ⊂ U(g).

Remark 13.4. Let g be a vector space equipped with a bilinear map
[, ] : g × g → g. Then one can define the algebra U(g) as above.
However, if the map ρ : g → U(g) is injective then we clearly must
have [x, x] = 0 for x ∈ g and the Jacobi identity, i.e., g has to be a Lie
algebra. Thus the PBW theorem and even Corollary 13.3 fail without
the axioms of a Lie algebra.

Corollary 13.5. Let gi, 1 ≤ i ≤ n, be Lie subalgebras of g such that
g = ⊕igi as a vector space (but [gi, gj] need not be zero). Then the mul-
tiplication map ⊗iU(gi)→ U(g) in any order is a linear isomorphism.

Proof. The corollary follows immediately from the PBW theorem by
choosing a basis of each gi. �

Remark 13.6. 1. Corollary 13.5 applies to the case of infinitely many
gi if we understand the tensor product accordingly: the span of tensor
products of elements of U(gi) where almost all of these elements are
equal to 1.
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2. Note that if dim gi = 1, this recovers the PBW theorem itself, so
Corollary 13.5 is in fact a generalization of the PBW theorem.

Let char(k) = 0. Define the symmetrization map σ : Sg→ U(g)
given by

σ(y1 ⊗ ...⊗ yn) =
1

n!

∑
s∈Sn

ys(1)...ys(n).

It is easy to see that this map commutes with the adjoint action of g.

Corollary 13.7. σ is an isomorphism.

Proof. It is easy to see that grσ (the induced map on the associated
graded algebra) coincides with φ, so the result follows from the PBW
theorem. �

Let Z(U(g)) denote the center of U(g).

Corollary 13.8. The map σ defines a filtered vector space isomor-
phism σ0 : (Sg)adg → Z(U(g)) whose associated graded is the algebra
isomorphism φ|(Sg)adg : (Sg)adg → grZ(U(g)).

In the case when g = LieG for a connected Lie group G, we thus
obtain a filtered vector space isomorphism of the center of U(g) with
(Sg)AdG.

Remark 13.9. The map σ0 is not, in general, an algebra homomor-
phism; however, a nontrivial theorem of M. Duflo says that if g is finite
dimensional then there exists a canonical filtered algebra isomorphism
η : Z(U(g)) → (Sg)adg (a certain twisted version of σ0) whose associ-
ated graded is φ|Z(U(g)). A construction of the Duflo isomorphism can
be found in [CR].

Example 13.10. Let g = sl2 = so3. Then g has a basis x, y, z with
[x, y] = z, [y, z] = x, [z, x] = y, and G = SO(3) acts on these ele-
ments by ordinary rotations of the 3-dimensional space. So the only
G-invariant polynomials of x, y, z are polynomials of r2 = x2 + y2 + z2.
Thus we get that Z(U(g)) = C[x2 + y2 + z2]. In terms of e, f, h, we
have

x2 + y2 + z2 = −fe− h2 + 2h

4
= −C

2
,

where C is the Casimir element.

13.2. Proof of the PBW theorem. The proof of Theorem 13.1 is
based on the following key lemma.
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Lemma 13.11. There exists a unique linear map ϕ : Tg → Sg such
that

(i) for an ordered monomial X := xi1 ...xim ∈ g⊗m one has
ϕ(X) = X;

(ii) one has ϕ(I) = 0; in other words, ϕ descends to a linear map
ϕ : U(g)→ Sg.

Remark 13.12. The map ϕ is not canonical and depends on the choice
of the ordered basis xi of g.

Note that Lemma 13.11 immediately implies the PBW theorem,
since by this lemma the images of ordered monomials under ϕ are
linearly independent in Sg, implying that these monomials themselves
are linearly independent in U(g).

Proof. It is clear that ϕ is unique if exists since ordered monomials
span U(g). We will construct ϕ by defining it inductively on FnTg for
n ≥ 0.

Suppose ϕ is already defined on Fn−1Tg and let us extend it to
FnTg = Fn−1Tg ⊕ g⊗n. So we should define ϕ on g⊗n. Since ϕ is
already defined on ordered monomials X (by ϕ(X) = X), we need to
extend this definition to all monomials.

Namely, let X be an ordered monomial of degree n, and let us define
ϕ on monomials of the form s(X) for s ∈ Sn, where

s(y1...yn) := ys(1)...ys(n).

To this end, fix a decomposition D of s into a product of transpositions
of neighbors:

s = sjr ...sj1 ,

and define ϕ(s(X)) by the formula

ϕ(s(X)) := X + ΦD(s,X),

where

ΦD(s,X) :=
r−1∑
m=0

ϕ([, ]jm+1(sjm ...sj1(X))),

and
[, ]j(y1...yjyj+1...yn) := y1...[yj, yj+1]...yn.

We need to show that ϕ(s(X)) is well defined, i.e., ΦD(s,X) does
not really depend on the choice of D and s but only on s(X). We first
show that ΦD(s,X) is independent on D.

To this end, recall that the symmetric group Sn is generated by
sj, 1 ≤ j ≤ n− 1 with defining relations

s2
j = 1; sjsk = sksj, |j − k| ≥ 2; sjsj+1sj = sj+1sjsj+1.
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Thus any two decompositions of s into a product of transpositions of
neighbors can be related by a sequence of applications of these relations
somewhere inside the decomposition.

Now, the first relation does not change the outcome by the identity
[x, y] = −[y, x].

For the second relation, suppose that j < k and we have two decom-
positions D1, D2 of s given by s = psjskq and s = psksjq, where q is a
product of m transpositions of neighbors. Let q(X) = Y abZcdT where
a, b, c, d ∈ g stand in positions j, j + 1, k, k + 1. Let Φ1 := ΦD1(s,X),
Φ2 := ΦD2(s,X). Then the sums defining Φ1 and Φ2 differ only in the
m-th and m+ 1-th term, so we get

Φ1 − Φ2 =

ϕ(Y abZ[c, d]T ) + ϕ(Y [a, b]ZdcT )− ϕ(Y [a, b]ZcdT )− ϕ(Y baZ[c, d]T ),

which equals zero by the induction assumption.
For the third relation, suppose that we have two decompositions

D1, D2 of s given by s = psjsj+1sjq and s = psj+1sjsj+1q, where q is
a product of k transpositions of neighbors. Let q(X) = Y abcZ where
a, b, c ∈ g stand in positions j, j + 1, j + 2. Let Φ1 := ΦD1(s,X),
Φ2 := ΦD2(s,X). Then the sums defining Φ1 and Φ2 differ only in the
k-th, k + 1-th, and k + 2-th terms, so we get

Φ1 − Φ2 =

(ϕ(Y [a, b]cZ) + ϕ(Y b[a, c]Z) + ϕ(Y [b, c]aZ))−
(ϕ(Y a[b, c]Z) + ϕ(Y [a, c]bZ) + ϕ(Y c[a, b]Z)) .

So the Jacobi identity

[[b, c], a] + [b, [a, c]] + [[a, b], c] = 0

combined with property (ii) in degree n−1 implies that Φ1−Φ2 = 0, i.e.,
Φ1 = Φ2, as claimed. Thus we will denote ΦD(s,X) just by Φ(s,X).

It remains to show that Φ(s,X) does not depend on the choice of
s and only depends on s(X). Let X = xi1 ...xin ; then s(X) = s′(X)
if and only if s = s′t, where t is the product of transpositions sk for
which ik = ik+1. Thus, it suffices to show that Φ(s,X) = Φ(ssk, X) for
such k. But this follows from the the fact that [x, x] = 0.

Now, it follows from the construction of ϕ that for any monomial X
of degree n (not necessarily ordered), ϕ(sj(X)) = ϕ(X) + ϕ([, ]j(X)).
Thus ϕ satisfies property (ii) in degree n. This concludes the proof of
Lemma 13.11 and hence Theorem 13.1. �
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