
11. Representations of Lie groups and Lie algebras

11.1. Representations. We have previously defined (finite dimen-
sional) representations of Lie groups and (iso)morphisms between them.
We can do the same for Lie algebras:

Definition 11.1. A representation of a Lie algebra g over a field k
(or a g-module) is a vector space V over k equipped with a homomor-
phism of Lie algebras ρ = ρV : g → gl(V ). A (homo)morphism of
representations A : V → W (also called an intertwining operator)
is a linear map which commutes with the g-action: AρV (b) = ρW (b)A
for b ∈ g. Such A is an isomorphism if it is an isomorphism of vector
spaces.

The first and second fundamental theorems of Lie theory imply:

Corollary 11.2. Let G be a Lie group and g = LieG.
(i) Any finite dimensional representation ρ : G→ GL(V ) gives rise

to a Lie algebra representation ρ∗ : g → gl(V ), and any morphism of
G-representations is also a morphism of g-representations.

(ii) If G is connected then any morphism of g-representations is a
morphism of G-representations.

(iii) If G is simply connected then the assignment ρ 7→ ρ∗ is an
equivalence of categories RepG → Rep g between the corresponding
categories of finite dimensional representations. In particular, any fi-
nite dimensional representation of the Lie algebra g can be uniquely
exponentiated to the group G.

Example 11.3. 1. The trivial representation: ρ(g) = 1, g ∈ G,
ρ∗(x) = 0, x ∈ g.

2. The adjoint representation: ρ(g) = Adg, ρ∗(x) = adx.

Exercise 11.4. Let g be a complex Lie algebra. Show that gC ∼=
g ⊕ g. Deduce that if G is a simply connected complex Lie group
then RepRG

∼= Rep(g ⊕ g), where RepRG is the category of finite
dimensional representations of G regarded as a real Lie group.

As usual, a subrepresentation of a representation V is a subspace
W ⊂ V invariant under the G-action (resp. g-action). In this case
the quotient space V/W has a natural structure of a representation,
called the quotient representation. The notion of direct sum of
representations is defined in an obvious way:

ρV⊕W (x) = ρV (x)⊕ ρW (x).

Also we have the notion of dual representation:

ρV ∗(g) = ρV (g−1)∗, g ∈ G; ρV ∗(x) = −ρV (x)∗, x ∈ g,
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and tensor product:

ρV⊗W (g) = ρV (g)⊗ ρW (g), ρV⊗W (x) = ρV (x)⊗ 1W + 1V ⊗ ρW (x).

Thus we have the notion of symmetric and exterior powers SmV,∧mV
of a representation V , which can be defined either as quotients or (over
a field of characteristic zero) as subrepresentations of V ⊗n. Also for
representations V,W , Hom(V,W ) is a representation via

g ◦ A = ρW (g)AρV (g−1), x ◦ A = ρW (x)A− AρV (x),

so if V is finite dimensional then Hom(V,W ) ∼= V ∗ ⊗W . Finally, for
every representation V we have the notion of invariants:

V G = {v ∈ V : gv = v ∀g ∈ G}, V g = {v ∈ V : xv = 0 ∀x ∈ g}.
Thus V G ⊂ V g and V G = V g for connected G (in general, V G =
(V g)G/G

◦
). Also Hom(V,W )G ∼= HomG(V,W ) and Hom(V,W )g =

Homg(V,W ), the spaces of intertwining operators. Note that in all
cases the formula for Lie algebras is determined by the formula for
groups by the requirement that these definitions should be consistent
with the assignment ρ 7→ ρ∗.

Definition 11.5. A representation V 6= 0 of G or g is irreducible if
any subrepresentation W ⊂ V is either 0 or V and is indecomposable
if for any decomposition V ∼= V1 ⊕ V2, we have V1 = 0 or V2 = 0.

It is clear that any finite dimensional representation is isomorphic
to a direct sum of indecomposable representations (in fact, uniquely
so up to order of summands by the Krull-Schmidt theorem). However,
not any V is a direct sum of irreducible representations, e.g.

ρ : C→ GL2(C), ρ(x) =

(
1 x
0 1

)
.

Definition 11.6. A representation V is called completely reducible
if it is isomorphic to a direct sum of irreducible representations.

Some of the main problems of representation theory are:
1) Classify irreducible representations;
2) If V is a completely reducible representation, find its decomposi-

tion into irreducibles.
3) For which G are all representations completely reducible?

Example 11.7. Let V be a finite dimensional C-representation of g or
G and A : V → V be a homomorphism of representations (e.g., defined
by a central element). Then we have a decomposition of representations
V = ⊕λV (λ), where V (λ) is the generalized eigenspace of A with
eigenvalue λ.
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Example 11.8. Let V be the vector representation of GL(V ). Then
V is irreducible, and more generally so are SmV,∧nV (show it!). Thus
V ⊗ V is completely reducible: V ⊗ V ∼= S2V ⊕ ∧2V .

11.2. Schur’s lemma.

Lemma 11.9. (Schur’s lemma) Let V,W be irreducible finite dimen-
sional complex representations of G or g. Then HomG,g(V,W ) = 0 if
V,W are not isomorphic, and every endomorphism of the representa-
tion V is a scalar.

Proof. Let A : V → W be a nonzero morphism of representations.
Then Im(A) ⊂ W is a nonzero subrepresentation, hence Im(A) = W .
Also Ker(A) ⊂ V is a proper subrepresentation, so Ker(A) = 0. Thus
A is an isomorphism, i.e., we may assume that W = V . In this case,
let λ be an eigenvalue of A. Then A − λ · Id : V → V is a morphism
of representations but not an isomorphism, hence it must be zero, so
A = λ · Id. �

Note that the second statement of Schur’s lemma (unlike the first
one) does not hold over R. For example, consider the rotation group
SO(2) (or any of its finite subgroups of order > 2) acting on V = R2 by
rotations. Then End(V ) = C 6= R. Similarly, if V is the representation
of SU(2) on H defined by right multiplication by unit quaternions
then V is an irreducible real representation but End(V ) = H 6= R.
For this reason, in representation theory of Lie groups and Lie algebras
one usually considers complex representations. Thus from now on all
representations we consider will be assumed complex unless specified
otherwise.10

Corollary 11.10. The center of G, g acts on an irreducible representa-
tion by a scalar. In particular, if G or g is abelian then every irreducible
representation of G is 1-dimensional.

Example 11.11. Irreducible representations of R are χs given by
χs(a) = exp(sa), s ∈ C. Irreducible representations of R× = R>0×Z/2
are χs,+(a) = |a|s, χs,−(a) = |a|ssign(a). Irreducible representations of
S1 are χn(z) = zn, n ∈ Z. Irreducible representations of the real group
C× = R>0 × S1 are χs,n(z) = |z|s(z/|z|)n, s ∈ C, n ∈ Z.

Corollary 11.12. Let Vi be irreducible and V = ⊕iniVi,W = ⊕imiVi
be completely reducible complex representations of G or g. Then we
have a natural linear isomorphism

HomG,g(V,W ) ∼= ⊕iMatmi,ni(C).

10An exception is the adjoint representation of a real Lie group and associated
tensor representations, which are real.
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Moreover, if V = W then this is an isomorphism of algebras.

11.3. Unitary representations. A finite dimensional representation
V of G is said to be unitary if it is equipped with a positive definite
Hermitian inner product B(, ) invariant under G, i.e., B(gv, gw) =
B(v, w) for v, w ∈ V , g ∈ G.

Proposition 11.13. Any unitary representation can be written as an
orthogonal direct sum of irreducible unitary representations. In partic-
ular, it is completely reducible.

Proof. If W ⊂ V is a subrepresentation of a unitary representation V
then let W⊥ be its orthogonal complement under B. Then W⊥ is also
a subrepresentation since B is invariant, and V = W ⊕W⊥ since B is
positive definite.

Now we can prove that V is an orthogonal direct sum of irreducible
unitary representations by induction in dimV . The base dimV = 1 is
clear so let us make the inductive step. Pick an irreducible W ⊂ V .
Then V = W ⊕ W⊥, and W⊥ is a unitary representation of dimen-
sion smaller than dimV , so is an orthogonal direct sum of irreducible
unitary representations by the induction assumption. �

Proposition 11.14. Any finite dimensional representation V of a fi-
nite group G is unitary. Moreover, if V is irreducible, the unitary
structure is unique up to a positive factor.

Proof. Let B be any positive definite inner product on V . Let

B̂(v, w) :=
∑
g∈G

B(gv, gw).

Then B̂ is positive definite and invariant, so V is unitary.
If V is irreducible and B1, B2 are two unitary structures on V then

B1(v, w) = B2(Av,w) for some homomorphism A : V → V . Thus
by Schur’s lemma A = λ · Id, and λ > 0 since B1, B2 are positive
definite. �

Corollary 11.15. Every finite dimensional complex representation of
a finite group G is completely reducible.

11.4. Representations of sl2. The Lie algebra sl2 = sl2(C) has basis

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

with commutator

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.
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Since 2-by-2 matrices act on variables x, y, they also act on the space
V = C[x, y] of polynomials in x, y. Namely, this action is given by the
formulas

e = x∂y, f = y∂x, h = x∂x − y∂y.
This infinite-dimensional representation has the form V = ⊕n≥0Vn,
where Vn is the space of polynomials of degree n. The space Vn is
invariant under e, f, h, so it is an n + 1-dimensional representation of
sl2. It has basis vpq = xpyq, such that

hvpq = (p− q)vpq, evpq = qvp+1,q−1, fvpq = pvp−1,q+1.

Thus V0 is the trivial representation, and V1 is the tautological rep-
resentation by 2-by-2 matrices. Also it is easy to see that V2 is the
adjoint representation.

Theorem 11.16. (i) Vn is irreducible.
(ii) If V 6= 0 is a finite dimensional representation of sl2 then e|V

and f |V are nilpotent, so U := Ker(e) 6= 0. Moreover, h preserves U
and acts diagonalizably on it, with nonnegative integer eigenvalues.

(iii) Any irreducible finite dimensional representation V of sl2 is
isomorphic to Vn for some n.

(iv) Any finite dimensional representation V of sl2 is completely re-
ducible.

Proof. (i) Let W ⊂ Vn be a nonzero subrepresentation. Since it is h-
invariant, it must be spanned by vectors vp,n−p for p from a nonempty
subset S ⊂ [0, n]. Since W is e-invariant and f -invariant, if m ∈ S
then so are m + 1,m − 1 (if they are in [0, n]). Thus S = [0, n] and
W = Vn.

(ii) Let V be a finite dimensional representation of sl2. We can
write V as a direct sum of generalized eigenspaces of h: V = ⊕λV (λ).
Since he = e(h + 2), hf = f(h − 2), we have e : V (λ) → V (λ + 2),
f : V (λ)→ V (λ− 2). Thus e|V , f |V are nilpotent, so U 6= 0.

If v ∈ U then e(hv) = (h−2)ev = 0, so hv ∈ U , i.e., U is h-invariant.
Given v ∈ U , consider the vector vm := emfmv. We have

efmv = fefm−1v + hfm−1v = fefm−1v + fm−1(h− 2(m− 1))v = ...

(11.1)

= fm−1m(h−m+ 1)v.

Thus

vm = em−1fm−1m(h−m+ 1)v = m(h−m+ 1)vm−1.

Hence
vm = m!h(h− 1)...(h−m+ 1)v.
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But for large enough m, vm = 0, since f is nilpotent, so

h(h− 1)...(h−m+ 1)v = 0.

Thus h acts diagonalizably on U with nonnegative integer eigenvalues.
(iii) Let v ∈ U be an eigenvector of h, i.e., hv = λv. Let wm = fmv.

Then

fwm = wm+1, hwm = (λ− 2m)wm.

Also, it follows from (11.1) that

ewm = m(λ−m+ 1)wm−1.

Thus if wm 6= 0 and λ 6= m then wm+1 6= 0. Also the nonzero vectors
wm are linearly independent since they have different eigenvalues of h.
Thus λ = n must be a nonnegative integer (as also follows from (ii)),
and wn+1 = 0. So V , being irreducible, has a basis wm, m = 0, ..., n.
Now it is easy to see that V ∼= Vn, via the assignment

wm 7→ n(n− 1)...(n−m+ 1)xmyn−m.

(iv) Consider the Casimir operator

C = 2fe+
h2

2
+ h.

It is easy to check that [C, e] = [C, f ] = [C, h] = 0, so C : V → V is a

homomorphism. Thus C|Vn = n(n+2)
2

(it is a scalar by Schur’s lemma,
and acts with such eigenvalue on vn0 ∈ Vn); note that these are different
for different n. For a general representation, we have V = ⊕cVc, the
direct sum of generalized eigenspaces of C.

Assume V is indecomposable. Then by Example 11.7 C has a single
eigenvalue c on V . Fix a Jordan-Hölder filtration on V , i.e. a
filtration

0 = F0V ⊂ F1V ⊂ ... ⊂ FmV = V

such that Yi := FiV/Fi−1V are irreducible for all i. By (iii), for each i

we have Yi ∼= Vn for some n, so c = n(n+2)
2

and thus this n is the same
for all i. Thus V (k) has dimension m, with h acting on it by k · Id
for k = n, n − 2, ...,−n and V (k) = 0 otherwise, by (ii); in particular,
dimV = m(n + 1). Let u1, ..., um be a basis of V (n). As in (iii), we
define subrepresentations Wi ⊂ V generated by ui. It is easy to see
that Wi

∼= Vn and the natural morphism W1⊕...⊕Wm → V is injective.
Hence it is an isomorphism by dimension count, i.e., V is completely
reducible. �

Corollary 11.17. (The Jacobson-Morozov lemma for GL(V )) Let V
be a finite dimensional complex vector space and N : V → V be a
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nilpotent operator. Then there is a unique up to isomorphism action
of sl2 on V for which e acts by N .

Proof. This follows from Theorem 11.16 and the Jordan normal form
theorem for operators on V . �

For a representation V define its character by

χV (z) = TrV (zh) =
∑
m

dimV (m)zm.

Thus

χVn(z) = zn + zn−2 + ...+ z−n =
zn+1 − z−n−1

z − z−1
.

It is easy to see that

χV⊕W = χV + χW , χV⊗W = χV χW .

Since the functions χVn are linearly independent, we see that a finite
dimensional representation of sl2 is determined by its character.

Theorem 11.18. (The Clebsch-Gordan rule) We have

Vm ⊗ Vn ∼= ⊕min(m,n)
i=0 V|m−n|+2i.

Proof. It suffices to note that we have the corresponding character iden-
tity:

χVmχVn =

min(m,n)∑
i=0

χV|m−n|+2i
.

�

Exercise 11.19. Show that Vn has an invariant nondegenerate inner
product (i.e., such that (av, w) + (v, aw) = 0 for a ∈ sl2, v, w ∈ Vn)
which is symmetric for even n and skew-symmetric for odd n. In par-
ticular, V ∗n

∼= Vn.

Exercise 11.20. Let G be the universal cover of SL2(R). Show that
G is not isomorphic to a Lie subgroup of GLn(R) for any n and that
moreover, the only quotients of G that are such subgroups are SL2(R)
and PSL2(R).
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