
8. Lie algebras

8.1. The Jacobi identity. The matrix commutator [x, y] = xy − yx
obviously satisfies the identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

called the Jacobi identity. Thus it is satisfied for any Lie subgroup
of GLn(K).

Proposition 8.1. The Jacobi identity holds for any Lie group G.

Proof. Let g = T1G. The Jacobi identity is equivalent to adx being a
derivation of the commutator:

adx([y, z]) = [adx(y), z] + [y, adx(z)], x, y, z ∈ g.

To show that it is indeed a derivation, let g(t) = exp(tx), then

Adg(t)([y, z]) = [Adg(t)(y),Adg(t)(z)].

The desired identity is then obtained by differentiating this equality by
t at t = 0 and using the Leibniz rule and Proposition 7.11(iv). �

Corollary 8.2. We have ad[x, y] = [adx, ady].

Proof. This is also equivalent to the Jacobi identity. �

Proposition 8.3. For x ∈ g one has exp(adx) = Adexp(x) ∈ GL(g).

Proof. We will show that exp(tadx) = Adexp(tx) for t ∈ R. Let γ1(t) =
exp(tadx) and γ2(t) = Adexp(tx). Then γ1, γ2 both satisfy the differen-
tial equation γ′(t) = γ(t)adx and equal 1 at t = 0. Thus γ1 = γ2. �

8.2. Lie algebras.

Definition 8.4. A Lie algebra over a field k is a vector space g
over k equipped with bilinear operation [, ] : g × g → g, called the
commutator or (Lie) bracket which satisfies the following identities:

(i) [x, x] = 0 for all x ∈ g;
(ii) the Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.
A (homo)morphism of Lie algebras is a linear map between Lie

algebras that preserves the commutator.

Remark 8.5. If k has characteristic 6= 2 then the condition [x, x] = 0
is equivalent to skew-symmetry [x, y] = −[y, x], but in characteristic 2
it is stronger.

Example 8.6. Any subspace of gln(k) closed under [x, y] := xy − yx
is a Lie algebra.
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Example 8.7. The map ad : g → End(g) is a morphism of Lie alge-
bras.

Thus we have

Theorem 8.8. If G is a K-Lie group (for K = R,C) then g := T1G has
a natural structure of a Lie algebra over K. Moreover, if φ : G→ K is
a morphism of Lie groups then φ∗ : T1G→ T1K is a morphism of Lie
algebras.

We will denote the Lie algebra g = T1G by LieG or Lie(G) and call
it the Lie algebra of G. We see that the assignment G 7→ LieG
is a functor from the category of Lie groups to the category of Lie
algebras. Thus we have a map Hom(G,K)→ Hom(LieG,LieK), which
is injective if G is connected.

Motivated by Proposition 7.11(v), a Lie algebra g is said to be com-
mutative or abelian if [x, y] = 0 for all x, y ∈ g.

8.3. Lie subalgebras and ideals. A Lie subalgebra of a Lie algebra
g is a subspace h ⊂ g closed under the commutator. It is called a Lie
ideal if moreover [g, h] ⊂ h.

Proposition 8.9. Let H ⊂ G be a Lie subgroup. Then:
(i) LieH ⊂ LieG is a Lie subalgebra;
(ii) If H is normal then LieH is a Lie ideal in LieG;
(iii) If G,H are connected and LieH ⊂ LieG is a Lie ideal then H

is normal in G.

Proof. (i) If x, y ∈ h then exp(tx), exp(sy) ∈ H, so by Proposition
7.11(iv)

[x, y] = lim
t,s→0

log(exp(tx) exp(sy) exp(−tx) exp(−sy))

ts
∈ h.

(ii) We have ghg−1 ∈ H for g ∈ G and h ∈ H. Thus, taking
h = exp(sy), y ∈ h and taking the derivative in s at zero, we get
Adg(y) ∈ h. Now taking g = exp(tx), x ∈ g and taking the derivative
in t at zero, by Proposition 7.11(iv) we get [x, y] ∈ h, i.e., h is a Lie
ideal.

(iii) If x ∈ g, y ∈ h are small then

exp(x) exp(y) exp(x)−1 =

exp(Adexp(x)y) = exp(exp(adx)y) = exp(
∞∑
n=0

(adx)ny
n!

) ∈ H
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since
∑∞

n=0
(adx)ny

n!
∈ h. So G acting on itself by conjugation maps a

small neighborhood of 1 in H into H (as G is generated by its neigh-
borhood of 1 by Proposition 3.15, since it is connected). But H is also
connected, so is generated by its neighborhood of 1, again by Proposi-
tion 3.15. Hence H is normal. �

8.4. The Lie algebra of vector fields. Recall that a vector field on
a manifold X is a compatible family of derivations v : O(U) → O(U)
for open subsets U ⊂ X.

Proposition 8.10. If v,w are derivations of an algebra A then so is
[v,w] := vw −wv.

Proof. We have

(vw −wv)(ab) = v(w(a)b+ aw(b))−w(v(a)b+ av(b)) =

vw(a)b+ w(a)v(b) + v(a)w(b) + avw(b)

−wv(a)b− v(a)w(b)−w(a)v(b)− awv(b) =

(vw −wv)(a)b+ a(vw −wv)(b).

�

Thus, the space Vect(X) of vector fields on X is a Lie algebra under
the operation

v,w 7→ [v,w],

called the Lie bracket of vector fields.7

In local coordinates we have

v =
∑
i

vi
∂

∂xi
, w =

∑
wj

∂

∂xj
,

so

[v,w] =
∑
i

(∑
j

(vj
∂wi
∂xj
− wj ∂vi∂xj

)

)
∂
∂xi
.

This implies that if vector fields v,w are tangent to a k-dimensional
submanifold Y ⊂ X then so is their Lie bracket [v,w]. Indeed, in local
coordinates Y is given by equations xk+1 = ... = xn = 0, and in such
coordinates a vector field is tangent to Y iff it does not contain terms
with ∂

∂xj
for j > k.

7Note that this Lie algebra is infinite dimensional for all real manifolds and many
(but not all) complex manifolds of positive dimension.
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Exercise 8.11. Let U ⊂ Rn be an open subset, v,w ∈ Vect(U) and
gt, ht be the associated flows, defined in a neighborhood of every point
of U for small t. Show that for any x ∈ U

lim
t,s→0

gthsg
−1
t h−1

s (x)− x

ts
= [v,w](x).

Now let G be a Lie group and VectL(G),VectR(G) ⊂ Vect(G) be the
subspaces of left and right invariant vector fields.

Proposition 8.12. VectL(G),VectR(G) ⊂ Vect(G) are Lie subalgebras
which are both canonically isomorphic to g = LieG.

Proof. The first statement is obvious, so we prove only the second state-
ment. Let x,y ∈ VectL(G). Then x = Lx, y = Ly for x = x(1), y =
y(1) ∈ g, where Lz denotes the vector field on G obtained by left trans-
lations of z ∈ g. Then [Lx,Ly] = Lz, where z = [Lx,Ly](1). So let us
compute z.

Let f be a regular function on a neighborhood of 1 ∈ G. We have
shown that for u ∈ g

(Luf)(g) = d
dt
|t=0f(g exp(tu)).

Thus,

z(f) = x(Lyf)−y(Lxf) = x( ∂
∂s
|s=0f(• exp(sy)))−y( ∂

∂t
|t=0f(• exp(tx))) =

∂
∂t
|t=0

∂
∂s
|s=0f(exp(tx) exp(sy))− ∂

∂s
|s=0

∂
∂t
|t=0f(exp(sy) exp(tx)) =

∂2

∂t∂s
|t=s=0(F (tx+ sy + 1

2
ts[x, y] + ...)− F (tx+ sy − 1

2
ts[x, y] + ...)),

where F (u) := f(exp(u)). It is easy to see by using Taylor expansion
that this expression equals to [x, y](f). Thus z = [x, y], i.e., the map
g → VectL(G) given by x 7→ Lx is a Lie algebra isomorphism. Sim-
ilarly, the map g → VectR(G) given by x 7→ −Rx is a Lie algebra
isomorphism, as claimed. �
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