
6. Classical Lie groups

6.1. First examples of classical groups. Roughly speaking, clas-
sical groups are groups of matrices arising from linear algebra. More
precisely, classical groups are the following subgroups of the general
linear group GLn(K): GLn(K), SLn(K) (the special linear group),
On(K), SOn(K), Sp2n(K), O(p, q), SO(p, q), U(p, q), SU(p, q), Sp(2p, 2q) :=
Sp2n(C) ∩ U(2p, 2q) for p+ q = n (and also some others we’ll consider
later).

Namely,
• The orthogonal group On(K) is the group of matrices preserving

the nondegenerate quadratic form in n variables, Q = x2
1 + ...+ x2

n (or,
equivalently, the corresponding bilinear form x1y1 + ...+ xnyn);
• The symplectic group Sp2n(K) is the group of matrices preserv-

ing a nondegenerate skew-symmetric form in 2n variables;
• The pseudo-orthogonal group O(p, q), p + q = n is the group

of real matrices preserving a nondegenerate quadratic form of signa-
ture (p, q), Q = x2

1 + ... + x2
p − x2

p+1 − ... − x2
n (or, equivalently, the

corresponding bilinear form);
• The pseudo-unitary group U(p, q), p+q = n is the group of com-

plex matrices preserving a nondegenerate Hermitian quadratic form of
signature (p, q), Q = |x1|2 + ...+ |xp|2 − |xp+1|2 − ...− |xn|2 (or, equiv-
alently, the corresponding sesquilinear form);
• The special pseudo-orthogonal, pseudo-unitary, and or-

thogonal groups SO(p, q) ⊂ O(p, q), SU(p, q) ⊂ U(p, q), SOn ⊂ On

are the subgroups of matrices of determinant 1.
Note that the groups don’t change under switching p, q and that

(S)On(R) = (S)O(n, 0); it is also denoted (S)O(n). Also (S)U(n, 0) is
denoted by (S)U(n).

Exercise 6.1. Show that the special (pseudo)orthogonal groups are
index 2 subgroups of the (pseudo)orthogonal groups.

Let us show that they are all Lie groups. For this purpose we’ll use
the exponential map for matrices. Namely, recall from linear algebra
that we have an analytic function exp : gln(K)→ GLn(K) given by the
formula

exp(a) =
∞∑
n=0

an

n!
,

and the matrix-valued analytic function log near 1 ∈ GLn(K),

log(A) = −
∞∑
n=1

(1− A)n

n
.
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Namely, this is well defined if the spectral radius of 1−A is < 1 (i.e., all
eigenvalues are in the open unit disk). These maps have the following
properties:

1. They are mutually inverse.
2. They are conjugation-invariant.
3. d exp0 = d log1 = Id.
4. If xy = yx then exp(x + y) = exp(x) exp(y). If XY = Y X then

log(XY ) = log(X) + log(Y ) (for X, Y sufficiently close to 1).
5. For x ∈ gln(K) the map t 7→ exp(tx) is a homomorphism of Lie

groups K→ GLn(K).
6. det exp(a) = exp(Tr a), log(detA) = Tr(logA).
Now we can look at classical groups and see what happens to the

equations defining them when we apply log.
1. G = SLn(K). We already showed that it is a Lie group in Example

3.14 but let us re-do it by a different method. The group G is defined
by the equation detA = 1. So for A close to 1 we have log(detA) = 0,
i.e., Tr log(A) = 0. So log(A) ∈ sln(K) = g, the space of matrices with
trace 0. This defines a local chart near 1 ∈ G, showing that G is a
manifold, hence a Lie group (namely, local charts near other points are
obtained by translation).

2. G = On(K). The equation is AT = A−1, thus log(A)T = − log(A),
so log(A) ∈ son(K) = g, the space of skew-symmetric matrices.

3. G = U(n). The equation is A
T

= A−1, thus log(A)
T

= − log(A),
so log(A) ∈ un = g, the space of skew-Hermitian matrices.

Exercise 6.2. Do the same for all classical groups listed above.

We see that the logarithm map identifies the neighborhood of 1 in
the group G with a neighborhood of 0 in a finite-dimensional vector
space. Thus we obtain

Proposition 6.3. Every classical group G from the above list is a Lie
group, with g = T1G ⊂ gln(K). Moreover, if u ⊂ gln(K) is a small
neighborhood of 0 and U = exp(u) then exp and log define mutually
inverse diffeomorphisms between u ∩ g and U ∩G.

Exercise 6.4. Which of these groups are complex Lie groups?

Exercise 6.5. Use this proposition to compute the dimensions of clas-
sical groups: dimSLn = n2 − 1, dimOn = n(n − 1)/2, dimSp2n =
n(2n + 1), dimSUn = n2 − 1, etc. (Note that for complex groups we
give the dimension over C).
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6.2. Quaternions. An important role in the theory of Lie groups is
played by the algebra of quaternions, which is the only noncommu-
tative finite dimensional division algebra over R, discovered in the 19th
century by W. R. Hamilton.

Definition 6.6. The algebra of quaternions is the R-algebra with
basis 1, i, j,k and multiplication rules

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1.

This algebra is associative but not commutative.
Given a quaternion

q = a+ bi + cj + dk, a, b, c, d ∈ R,
we define the conjugate quaternion by the formula

q = a− bi− cj− dk.
Thus

qq = |q|2 = a2 + b2 + c2 + d2 ∈ R,
where |q| is the length of q as a vector in R4. So if q 6= 0 then it is
invertible and

q−1 =
q

|q|2
.

Thus H is a division algebra (i.e., a skew-field). One can show that
the only finite dimensional associative division algebras over R are R,
C and H. (See Exercise 6.9).

In particular, we can do linear algebra over H in almost the same
way as we do over ordinary fields. Namely, every (left or right) module
over H is free and has a basis; such a module is called a (left or right)
quaternionic vector space. In particular, any (say, right) quater-
nionic vector space of dimension n (i.e., with basis of n elements) is
isomorphic to Hn. Moreover, H-linear maps between such spaces are
given by left multiplication by quaternionic matrices. Finally, it is easy
to see that Gaussian elimination works the same way as over ordinary
fields; in particular, every invertible square matrix over H is a product
of elementary matrices of the form 1 + (q− 1)Eii and 1 + qEij, i 6= j,
where q ∈ H is nonzero.

Also it is easy to show that

q1q2 = q2 · q1, |q1q2| = |q1| · |q2|
(check this!). So quaternions are similar to complex numbers, except
they are non-commutative. Finally, note that H contains a copy of C
spanned by 1, i; however, this does not make H a C-algebra since i is
not a central element.
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Proposition 6.7. The group of unit quaternions {q ∈ H : |q| = 1}
under multiplication is isomorphic to SU(2) as a Lie group.

Proof. We can realize H as C2, where C ⊂ H is spanned by 1, i; namely,
(z1, z2) 7→ z1 + jz2. Then left multiplication by quaternions on H = C2

commutes with right multiplication by C, i.e., is C-linear. So it is
given by complex 2-by-2 matrices. It is easy to compute that the
corresponding matrix is

z1 + z2j 7→
(
z1 −z2

z2 z1

)
,

and we showed in Example 2.3(5) that such matrices (with |z1|2+|z2|2 =
1) are exactly the matrices from SU(2). �

This is another way to see that SU(2) ∼= S3 as a manifold (since the
set of unit quaternions is manifestly S3).

Corollary 6.8. The map q 7→ ( q
|q| , |q|) is an isomorphism of Lie

groups H× ∼= SU(2)× R>0.

This is the quaternionic analog of the trigonometric form of complex
numbers, except the “phase” factor q

|q| is now not in S1 but in S3 =

SU(2).

Exercise 6.9. Let D be a finite dimensional division algebra over R.
(i) Show that if D is commutative then D = R or D = C.
(ii) Assume that D is not commutative. Take q ∈ D, q /∈ R. Show

that there exist a, b ∈ R such that i := a+ bq satisfies i2 = −1.
(iii) Decompose D into the eigenspaces D± of the operator of con-

jugation by i with eigenvalues ±1 and show that 1, i is a basis of D+,
i.e., D+

∼= C.
(iv) Pick q ∈ D−, q 6= 0, and show that D− = D+q, so {1, i,q, iq}

is a basis of D over R. Deduce that q2 is a central element of D.
(v) Conclude that q2 = −λ where λ ∈ R>0 and deduce that D ∼= H.

6.3. More classical groups. Now we can define a new classical group
GLn(H), a real Lie group of dimension 4n2, called the quaternionic
general linear group. For example, as we just showed, GL1(H) =
H× ∼= SU(2)× R>0.

For A ∈ GLn(H), let detA be the determinant of A as a linear
operator on C2n = Hn.

Lemma 6.10. We have detA > 0.

Proof. For n = 1, A = q ∈ H× and det q = |q|2 > 0. It follows that
det(1+(q−1)Eii) = |q|2 > 0. Also it is easy to see that det(1+qEij) =
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1 for i 6= j. It then follows by Gaussian elimination that for any A we
have det(A) > 0. �

Let SLn(H) ⊂ GLn(H) be the subgroup of matrices A with detA =
1, called the quaternionic special linear group.

Exercise 6.11. Show that SLn(H) ⊂ GLn(H) is a normal subgroup,
and GLn(H) ∼= SLn(H)× R>0.

Thus SLn(H) is a real Lie group of dimension 4n2 − 1.
We can also define groups of quaternionic matrices preserving various

sesquilinear forms. Namely, let V ∼= Hn be a right quaternionic vector
space.

Definition 6.12. A sesquilinear form on V is a biadditive function
(, ) : V × V → H such that

(xα,yβ) = α(x,y)β, x,y ∈ V, α, β ∈ H.

Such a form is called Hermitian if (x,y) = (y,x) and skew-

Hermitian if (x,y) = −(y,x).

Note that the order of factors is important here!

Proposition 6.13. (i) Every nondegenerate Hermitian form on V in
some basis takes the form

(x,y) = x1y1 + ...+ xpyp − xp+1yp+1 − ...− xnyn
for a unique pair (p, q) with p+ q = n.

(ii) Every nondegenerate skew-Hermitian form on V in some basis
takes the form

(x,y) = x1jy1 + ...+ xnjyn.

Exercise 6.14. Prove Proposition 6.13.

In (i), the pair (p, q) is called the signature of the quaternionic
Hermitian form.

Exercise 6.15. Show that a nondegenerate quaternionic Hermitian
form of signature (p, q) can be written as

(x,y) = B1(x,y) + jB2(x,y),

with B1, B2 taking values in C = R + Ri ⊂ H, where B1 is a usual
nondegenerate Hermitian form of signature (2p, 2q) and B2 is a non-
degenerate skew-symmetric bilinear form on V as a (2n-dimensional)
C-vector space. Show that B2(x,y) = B1(xj,y). Deduce that any
complex linear transformation preserving B1 and B2 is H-linear.
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Thus the group of symmetries of a nondegenerate quaternionic Her-
mitian form of signature (p, q) is Sp(2p, 2q) = Sp2n(C) ∩ U(2p, 2q). It
is called the quaternionic pseudo-unitary group.

One also sometimes uses the notation U(p, q,R) = O(p, q), U(p, q,C) =
U(p, q), U(p, q,H) = Sp(2p, 2q), and U(n, 0,K) = U(n,K) for K =
R,C,H.

Exercise 6.16. Show that a nondegenerate quaternionic skew-Hermitian
form can be written as

(x,y) = B1(x,y) + jB2(x,y),

with B1, B2 taking values in C = R + Ri ⊂ H, where B1 is an or-
dinary skew-Hermitian form, while B2 is a symmetric bilinear form
(both nondegenerate). Show that B2(x,y) = B1(xj,y). Deduce that
any complex linear transformation preserving B1 and B2 is H-linear.
Also show that the signature of the Hermitian form iB1 is necessarily
(n, n).

Thus the group of symmetries of a nondegenerate quaternionic skew-
Hermitian form is O2n(C) ∩ U(n, n). This group is denoted by O∗(2n)
and called the quaternionic orthogonal group. There is also the
subgroup SO∗(2n) ⊂ O∗(2n) of matrices of determinant 1 (having in-
dex 2).

All of these groups are Lie groups, which is shown similarly to Sub-
section 6.1, using the exponential map.

Exercise 6.17. Compute the dimensions of all classical groups intro-
duced above.
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