
5. Tensor fields

5.1. A crash course on vector bundles. Let X be a real manifold.
A vector bundle on X is, informally speaking, a (locally trivial) fiber
bundle on X whose fibers are finite dimensional vector spaces. In other
words, it is a family of vector spaces parametrized by x ∈ X and varying
regularly with x. More precisely, we have the following definition.

Let K = R or C.

Definition 5.1. A K-vector bundle of rank n on X is a manifold E
with a surjective regular map p : E → X and aK-vector space structure
on each fiber p−1(x) such that every x ∈ X has a neighborhood U
admitting a diffeomorphism g : U × Kn → p−1(U) with the following
properties:

(i) (p ◦ g)(u, v) = u, and
(ii) the map g is K-linear on the second factor.

In other words, locally on X, E is isomorphic to X × Kn, but not
necessarily globally so.

As for ordinary fiber bundles, E is called the total space and X the
base of the bundle.

Note that even if X is a complex manifold and K = C, E need not
be a complex manifold.

Definition 5.2. A complex vector bundle p : E → X on a complex
manifold X is said to be holomorphic if E is a complex manifold and
the diffeomorphisms gU can be chosen holomorphic.

From now on, unless specified otherwise, all complex vector bundles
on complex manifolds we consider will be holomorphic.

It follows from the definition that if p : E → X is a vector bundle
then X has an open cover {Uα} such that E trivializes on each Uα, i.e.,
there is a diffeomorphism gα : Uα × Kn → p−1(Uα) as above. In this
case we have clutching functions

hαβ : Uα ∩ Uβ → GLn(K)

(holomorphic if E is a holomorphic bundle), defined by the formula

(g−1
α ◦ gβ)(x, v) = (x, hαβ(x)v)

which satisfy the consistency conditions

hαβ(x) = hβα(x)−1

and

hαβ(x) ◦ hβγ(x) = hαγ(x)
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for x ∈ Uα ∩Uβ ∩Uγ. Moreover, the bundle can be reconstructed from
this data, starting from the disjoint union tαUα ×Kn and identifying
(gluing) points according to

hαβ : (x, v) ∈ Uβ ×Kn ∼ (x, hαβ(x)v) ∈ Uα ×Kn.

The consistency conditions ensure that the relation ∼ is symmetric and
transitive, so it is an equivalence relation, and we define E to be the
space of equivalence classes with the quotient topology. Then E has a
natural structure of a vector bundle on X.

This can also be used for constructing vector bundles. Namely, the
above construction defines a K-vector bundle on X once we are given
a cover {Uα} on X and a collection of clutching functions

hαβ : Uα ∩ Uβ → GLn(K)

satisfying the consistency conditions.

Remark 5.3. All this works more generally for non-linear fiber bundles
if we drop the linearity conditions along fibers.

Example 5.4. 1. The trivial bundle p : E = X×Kn → X, p(x, v) =
x.

2. The tangent bundle is the vector bundle p : TX → X con-
structed as follows. For the open cover we take an atlas of charts
(Uα, φα) with transition maps

θαβ = φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ),

and we set

hαβ(x) := dφβ(x)θαβ.

(Check that these maps satisfy consistency conditions!)
Thus the tangent bundle TX is a vector bundle of rank dimX whose

fiber p−1(x) is naturally the tangent space TxX (indeed, the tangent
vectors transform under coordinate changes exactly by multiplication
by hαβ(x)). In other words, it formalizes the idea of “the tangent space
TxX varying smoothly with x ∈ X”.

Definition 5.5. A section of a map p : E → X is a map s : X → E
such that p ◦ s = Idx.

Example 5.6. If p : X×Y = E → X, p(x, y) = x is the trivial bundle
then a section s : X → E is given by s(x) = (x, f(x)) where y = f(x)
is a function X → Y , and the image of s is the graph of f . So the
notion of a section is a generalization of the notion of a function.
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In particular, we may consider sections of a vector bundle p : E → X
over an open set U ⊂ X. These sections form a vector space denoted
Γ(U,E).

Exercise 5.7. Show that a vector bundle p : E → X is trivial (i.e.,
globally isomorphic to X×Kn) if and only if it admits sections s1, ..., sn
which form a basis in every fiber p−1(x).

5.2. Vector fields.

Definition 5.8. A vector field on X is a section of the tangent bundle
TX.

Thus in local coordinates a vector field looks like

v =
∑
i

vi
∂

∂xi
,

vi = vi(x), and if xi 7→ x′i is a change of local coordinates then the
expression for v in the new coordinates is

v =
∑
i

v′i
∂

∂x′i

where

v′i =
∑
j

∂x′i
∂xj

vj,

i.e., the clutching function is the Jacobi matrix of the change of
variable. Thus, every vector field v on X defines a derivation of the
algebra O(U) for every open set U ⊂ X compatible with restriction
maps O(U) → O(V ) for V ⊂ U ;5 in particular, a derivation Ox → Ox

for all x ∈ X. Conversely, it is easy to see that such a collection of
derivations gives rise to a vector field, so this is really the same thing.

A manifold X is called parallelizable if its tangent bundle is trivial.
By Exercise 5.7, this is equivalent to having a collection of vector fields
v1, ...,vn which form a basis in every tangent space (such a collection
is called a frame). For example, the circle S1 and hence the torus
S1 × S1 are parallelizable. On the other hand, the sphere S2 is not
parallelizable, since it does not even have a single nowhere vanishing
vector field (the Hairy Ball theorem, or Hedgehog theorem). The
same is true for any even-dimensional sphere S2m, m ≥ 1.

5In other words, using a fancier language, v defines a derivation of the sheaf of
regular functions on X.
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5.3. Tensor fields, differential forms. Since vector bundles are ba-
sically just smooth families of vector spaces varying over some base
manifold X, we can do with them the same things we can do with
vector spaces - duals, tensor products, symmetric and exterior powers,
etc. E.g., the cotangent bundle T ∗X is dual to the tangent bundle
TX.

More generally, we make the following definition.

Definition 5.9. A tensor field of rank (k,m) on a manifold X is a
section of the tensor product (TX)⊗k ⊗ (T ∗X)⊗m.

For example, a tensor field of rank (1, 0) is a vector field. Also, a
skew-symmetric tensor field of rank (0,m) is called a differential m-
form on X. In other words, a differential m-form is a section of the
vector bundle ΛmT ∗X.

For instance, if f ∈ O(X) then we have a differential 1-form df on
X, called the differential of f (indeed, recall that dxf : TxX → K).
A general 1-form can therefore be written in local coordinates as

ω =
∑
i

aidxi.

where ai = ai(x). If coordinates are changed as xi 7→ x′i, then in new
coordinates

ω =
∑
i

a′idx
′
i

where

a′i =
∑
j

∂xj
∂x′i

aj.

Thus the clutching function is the inverse of the Jacobi matrix of
the change of variable. For instance,

df =
∑
i

∂f

∂xi
dxi.

More generally, a differential m-form in local coordinates looks like

ω =
∑

1≤i1<...<im≤n

ai1...im(x)dxi1 ∧ ... ∧ dxim .

5.4. Left and right invariant tensor fields on Lie groups. Note
that if a Lie group G acts on a manifold X, then it automatically acts
on the tangent bundle TX and thus on vector and, more generally,
tensor fields on X. In particular, G acts on tensor fields on itself by
left and right translations; we will denote this action by Lg and Rg,
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respectively. We say that a tensor field T on G is left invariant if
LgT = T for all g ∈ G, and right invariant if RgT = T for all g ∈ G.

Proposition 5.10. (i) For any τ ∈ g⊗k ⊗ g∗⊗m there exists a unique
left invariant tensor field Lτ and a unique right invariant tensor field
Rτ whose value at 1 is τ . Thus, the spaces of such tensor fields are
naturally isomorphic to g⊗k ⊗ g∗⊗m.

(ii) Lτ is also right invariant iff Rτ is also left invariant iff τ is
invariant under the adjoint representation Adg.

Proof. We only prove (i). Consider the tensor fields Lτ (g) := Lgτ,Rτ (g) :=
Rg−1τ (i.e., we “spread” τ from 1 ∈ G to other points g ∈ G by
left/right translations). By construction, Rg−1τ is right invariant, while
Lgτ is left invariant, both with value τ at 1, and it is clear that these
are unique. �

Exercise 5.11. Prove Proposition 5.10(ii).

Corollary 5.12. A Lie group is parallelizable.

Proof. Given a basis e1, ..., en of g = T1G, the vector fields Lge1, ..., Lgen
form a frame. �

Remark 5.13. In particular, S1 and SU(2) = S3 are parallelizable. It
turns out that Sn for n ≥ 1 is parallelizable if and only if n = 1, 3, 7
(a deep theorem in differential topology). So spheres of other dimen-
sions don’t admit a Lie group structure. The sphere S7 does not admit
one either, although it admits a weaker structure of a “homotopy Lie
group”, or H-space (arising from octonions) which suffices for paral-
lelizability. Thus the only spheres admitting a Lie group structure are
S0 = {1,−1}, S1 and S3. This result is fairly elementary and will be
proved in Section 46.
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