4. Homogeneous spaces, Lie group actions

4.1. Homogeneous spaces. A regular map of manifolds $p: Y \to X$ is a said to be a locally trivial fibration (or fiber bundle) with base X, total space Y and fiber being a manifold F if every point $x \in X$ has a neighborhood U such that there is a diffeomorphism $h: U \times F \cong p^{-1}(U)$ with $(p \circ h)(u, f) = u$. In other words, locally p looks like the projection $X \times F \to X$ (the trivial fiber bundle with fiber F over X), but not necessarily globally so. This generalizes the notion of a covering, in which case F is 0-dimensional (discrete).

Theorem 4.1. (i) Let G be a Lie group of dimension n and $H \subset G$ a closed Lie subgroup of dimension k. Then the **homogeneous space** G/H has a natural structure of an n - k-dimensional manifold, and the map $p: G \to G/H$ is a locally trivial fibration with fiber H.

(ii) If moreover H is normal in G then G/H is a Lie group.

(iii) We have a natural isomorphism $T_1(G/H) \cong T_1G/T_1H$.

Proof. Let $\overline{g} \in G/H$ and $g \in p^{-1}(\overline{g})$. Then $gH \subset G$ is an embedded submanifold (image of H under left translation by g). Pick a sufficiently small transversal submanifold U passing through g (i.e., $T_qG = T_q(gH) \oplus T_qU$).

By the inverse function theorem, the set UH is open in G. Let \overline{U} be the image of UH in G/H. Since $p^{-1}(\overline{U}) = UH$ is open, \overline{U} is open in the quotient topology. Also it is clear that $p: U \to \overline{U}$ is a homeomorphism. This defines a local chart near $\overline{g} \in G/H$, and it is easy to check that transition maps between such charts are regular. So G/H acquires the structure of a manifold, which is easily checked to be independent on the choices we made. Also the multiplication map $U \times H \to UH$ is a diffeomorphism, which implies that $p: G \to G/H$ is a locally trivial fibration with fiber H. Finally, we have a surjective linear map $T_gG \to T_{\overline{g}}G/H$ whose kernel is $T_g(gH)$. So in particular for g = 1 we get $T_1(G/H) \cong T_1G/T_1H$. This proves all parts of the proposition.

Recall that a sequence of group homomorphisms $d_i : C^i \to C^{i+1}$ is a **complex** if for all $i, d_i \circ d_{i-1}$ is the trivial homomorphism $C^{i-1} \to C^{i+1}$. (One may consider finite complexes, semi-infinite to the left or to the right, or infinite in both directions). In this case $\operatorname{Im}(d_{i-1}) \subset \operatorname{Ker}(d_i)$ is a subgroup. The *i*-th **cohomology** $H^i(C^{\bullet})$ of the complex C^{\bullet} is the quotient $\operatorname{Ker}(d_i)/\operatorname{Im}(d_{i-1})$. In general it is just a set but if C^i are abelian groups, it is also an abelian group. Also recall that a complex C^{\bullet} is trivial (consists of one element). A complex exact in all its terms (except possibly first and last, where this condition makes no sense) is called an **exact sequence**.

Corollary 4.2. Let $H \subset G$ be a closed Lie subgroup.

(i) If H is connected then the map $p_0 : \pi_0(G) \to \pi_0(G/H)$ is a bijection.

(ii) If also G is connected then there is an exact sequence

$$\pi_1(H) \to \pi_1(G) \to \pi_1(G/H) \to 1.$$

Proof. This follows from the theory of covering spaces using that $p: G \to G/H$ is a fibration. \Box

Exercise 4.3. Fill in the details in the proof of Corollary 4.2.

Remark 4.4. The sequence in Corollary 4.2(ii) is the end portion of the infinite long exact sequence of homotopy groups of a fibration,

$$. \to \pi_i(H) \to \pi_i(G) \to \pi_i(G/H) \to \pi_{i-1}(H) \to \dots,$$

where $\pi_i(X)$ is the *i*-th homotopy group of X.

4.2. Lie subgroups. We will call the image of an injective immersion of manifolds an immersed submanifold; it has a manifold structure coming from the source of the immersion.

Definition 4.5. A Lie subgroup of a Lie group G is a subgroup H which is also an *immersed* submanifold (but need not be an *embedded* submanifold, nor a closed subset).

It is clear that in this case H is still a Lie group and the inclusion $H \hookrightarrow G$ is a homomorphism of Lie groups.

Example 4.6. 1. The winding of a torus in Example 3.14(2) realizes \mathbb{R} as a Lie subgroup of $S^1 \times S^1$ which is not closed.

2. Any countable subgroup of G is a 0-dimensional Lie subgroup, but not always a closed one (e.g., $\mathbb{Q} \subset \mathbb{R}$).

Proposition 4.7. Let $f : G \to K$ be a homomorphism of Lie groups. Then H := Ker f is a closed normal Lie subgroup in G and Imf is a Lie subgroup in K, closed if and only if it is an embedded submanifold. In the latter case, we have an isomorphism of Lie groups $G/H \cong \text{Im} f$.

We will prove Proposition 4.7 in Subsection 9.1.

4.3. Actions and representations of Lie groups. Let X be a manifold, G a Lie group, and $a: G \times X \to X$ a set-theoretical left action of G on X.

Definition 4.8. This action is called **regular** if the map *a* is regular.

From now on, by an action of G on X we will always mean a regular action.

Example 4.9. 1. Any Lie subgroup of $GL_n(\mathbb{R})$ acts on \mathbb{R}^n by linear transformations. Likewise, any Lie subgroup of $GL_n(\mathbb{C})$ acts on \mathbb{C}^n .

2. SO(3) acts on S^2 by rotations.

Definition 4.10. A (real analytic) **finite dimensional representation** of a *real* Lie group G is a linear action of G on a finite dimensional vector space V over \mathbb{R} or \mathbb{C} . Similarly, a (complex analytic) finite dimensional representation of a *complex* Lie group G is a linear action of G on a finite dimensional vector space V over \mathbb{C} .

In other words, a representation is a homomorphism of Lie groups $\pi_V: G \to GL(V)$.

Definition 4.11. A (homo)morphism of representations (or intertwining operator) $A: V \to W$ is a linear map which commutes with the *G*-action, i.e., $A\pi_V(g) = \pi_W(g)A$, $g \in G$. In particular, if V = W, such A is called an endomorphism of V.

As usual, an **isomorphism of representations** is an invertible morphism. With these definitions, finite dimensional representations of G form a *category*.

Note also that we have the operations of **dual and tensor product** on representations. Namely, given a representation V of G, we can define its representation on the dual space V^* by

$$\pi_{V^*}(g) = \pi_V(g^{-1})^*,$$

and if W is another representation of G then we can define a representation of G on $V \otimes W$ (the tensor product of vector spaces) by

$$\pi_{V\otimes W}(g) = \pi_V(g) \otimes \pi_W(g).$$

Also if $V \subset W$ is a **subrepresentation** (i.e., a subspace invariant under G) then W/V is also a representation of G, called the **quotient** representation.

4.4. Orbits and stabilizers. As in ordinary group theory, if G acts on X and $x \in X$ then we can define the orbit $Gx \subset X$ of x as the set of $gx, g \in G$, and the stabilizer, or isotropy group $G_x \subset G$ to be the group of $g \in G$ such that gx = x.

Proposition 4.12. (The orbit-stabilizer theorem for Lie group actions) The stabilizer $G_x \subset G$ is a closed Lie subgroup, and the natural map $G/G_x \to X$ is an injective immersion whose image is Gx.

Proposition 4.12 will be proved in Subsection 9.1.

Corollary 4.13. The orbit $Gx \subset X$ is an immersed submanifold, and we have a natural isomorphism $T_x(Gx) \cong T_1G/T_1G_x$. If Gx is an embedded submanifold then the map $G/G_x \to Gx$ is a diffeomorphism.

Remark 4.14. Note that Gx need not be closed in X. E.g., let \mathbb{C}^{\times} act on \mathbb{C} by multiplication. The orbit of 1 is $\mathbb{C}^{\times} \subset \mathbb{C}$, which is not closed.

Example 4.15. Suppose that G acts on X transitively. Then we get that $X \cong G/G_x$ for any $x \in X$, i.e., X is a **homogeneous space**.

Corollary 4.16. If G acts transitively on X then the map $p: G \to X$ given by p(g) = gx is a locally trivial fibration with fiber G_x .

Example 4.17. 1. SO(3) acts transitively on S^2 by rotations, $G_x = S^1 = SO(2)$, so $S^2 = SO(3)/S^1$. Thus $SO(3) = \mathbb{RP}^3$ fibers over S^2 with fiber S^1 .

2. SU(2) acts on $S^2 = \mathbb{CP}^1$, and the stabilizer is $S^1 = U(1)$. Thus $SU(2)/S^1 = S^2$, and $SU(2) = S^3$ fibers over S^2 with fiber S^1 (the **Hopf** fibration). Here is D. Richter's keyring model of the Hopf fibration:

3. Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} and $\mathcal{F}_n(\mathbb{K})$ the set of flags $0 \subset V_1 \subset ... \subset V_n = \mathbb{K}^n$ (dim $V_i = i$). Then $G = GL_n(\mathbb{K})$ acts transitively on $\mathcal{F}_n(\mathbb{K})$ (check it!). Also let $P \in \mathcal{F}_n(\mathbb{K})$ be the flag for which $V_i = \mathbb{K}^i$ is the subspace of vectors whose all coordinates but the first *i* are zero. Then G_P is the subgroup $B_n(\mathbb{K}) \subset GL_n(\mathbb{K})$ of invertible upper triangular matrices. Thus $\mathcal{F}_n(\mathbb{K}) = GL_n(\mathbb{K})/B_n(\mathbb{K})$ is a homogeneous space of $GL_n(\mathbb{K})$, in particular, a \mathbb{K} -manifold. It is called the **flag manifold**.

4.5. Left translation, right translation, and adjoint action. Recall that a Lie group G acts on itself by left translations $L_g(x) = gx$ and right translations $R_{g^{-1}}(x) = xg^{-1}$ (note that both are left actions).

Definition 4.18. The adjoint action $\operatorname{Ad}_g : G \to G$ is the action $\operatorname{Ad}_g = L_g \circ R_{g^{-1}} = R_{g^{-1}} \circ L_g$; i.e., $\operatorname{Ad}_g(x) = gxg^{-1}$.

Note this is an action by (inner) automorphisms. Also since $\operatorname{Ad}_g(1) = 1$, we have a linear map $d_1\operatorname{Ad}_g : \mathfrak{g} \to \mathfrak{g}$, where $\mathfrak{g} = T_1G$. We will abuse notation and denote this map just by Ad_g . This defines a representation of G on \mathfrak{g} called the **adjoint representation**.

18.745 Lie Groups and Lie Algebras I Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.