
3. Lie groups, II

3.1. A crash course on coverings. Now we need to review some
more topology. Let X, Y be Hausdorff topological spaces, and
p : Y → X a continuous map. Then p is called a covering if ev-
ery point x ∈ X has a neighborhood U such that p−1(U) is a union
of disjoint open sets (called sheets of the covering) each of which is
mapped homeomorphically onto U by p:

In other words, there exists a homeomorphism h : U × F → p−1(U)
for some discrete space F with (p ◦ h)(u, f) = u for all u ∈ U , f ∈ F .
I.e., informally speaking, a covering is a map that locally on X looks
like the projection X × F → X for some discrete F .

We will consider only coverings with countable fibers, and just call
them coverings. It is clear that a covering of a manifold (Ck, real or
complex analytic) is a manifold of the same type, and the covering map
is regular.

Two paths x0, x1 : [0, 1] → X such that xi(0) = P, xi(1) = Q are
said to be homotopic if there is a continuous map

x : [0, 1]× [0, 1]→ X,

called a homotopy between x0 and x1, such that x(t, 0) = x0(t) and
x(t, 1) = x1(t), x(0, s) = P, x(1, s) = Q. See a movie here:
https://commons.wikimedia.org/wiki/File:Homotopy.gif#/media/

File:HomotopySmall.gif

For example, if x(t) is a path and g : [0, 1] → [0, 1] is a change of
parameter with g(0) = 0, g(1) = 1 then the paths x1(t) = x(t) and
x2(t) = x(g(t)) are clearly homotopic.
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A path-connected Hausdorff space X is said to be simply con-
nected if for any P,Q ∈ X, any paths x0, x1 : [0, 1] → X such that
xi(0) = P, xi(1) = Q are homotopic.

Example 3.1. S1 is not simply connected but Sn is simply connected
for n ≥ 2.

It is easy to show that any covering has a homotopy lifting prop-

erty: if b ∈ X and b̃ ∈ p−1(b) ⊂ Y then any path γ starting at b admits

a unique lift to a path γ̃ starting at b̃, i.e., p(γ̃) = γ. Moreover, if γ1, γ2

are homotopic paths on X then γ̃1, γ̃2 are homotopic on Y (in partic-
ular, have the same endpoint). Thus, if Z is a simply connected space
with a point z then any continuous map f : Z → X with f(z) = b

lifts to a unique continuous map f̃ : Z → Y satisfying f̃(z) = b̃; i.e.,

p ◦ f̃ = f . Namely, to compute f̃(w), pick a path β from z to w, let

γ = f(β) and consider the path γ̃. Then the endpoint of γ̃ is f̃(w),
and it does not depend on the choice of β.

If Z,X are manifolds (of any regularity type), Z is simply connected,

and f : Z → X is a regular map then the lift f̃ : Z → Y is also regular.
Indeed, if we introduce local coordinates on Y using the homeomor-

phism between sheets of the covering and their images then f̃ and f
will be locally expressed by the same functions.

A covering p : Y → X of a path-connected space X is called uni-
versal if Y is simply connected.

If X is a sufficiently nice space, e.g., a manifold, its universal covering

can be constructed as follows. Fix b ∈ X and let X̃b be the set of
homotopy classes of paths on X starting at b. We have a natural map

p : X̃b → X, p(γ) = γ(1). If U ⊂ X is a small ball around a point
x ∈ X then U is simply connected, so we have a natural identification
h : U × F → p−1(U) with (p ◦ h)(u, f) = u, where F = p−1(x) is
the set of homotopy classes of paths from b to x; namely, h(u, f) is
the concatenation of f with any path connecting x with u inside U .
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Here the concatenation γ1 ◦ γ2 of paths γ1, γ2 : [0, 1] → X with
γ2(1) = γ1(0) is the path γ = γ1◦γ2 : [0, 1]→ X such that γ(t) = γ2(2t)
for t ≤ 1/2 and γ(t) = γ1(2t− 1) for t ≥ 1/2.

The topologies on all such p−1(U) induced by these identifications

glue together into a topology on X̃b, and the map p : X̃b → X is then

a covering. Moreover, the homotopy lifting property implies that X̃b is
simply connected, so this covering is universal.

It is easy to see that a universal covering p : Y → X covers any path-
connected covering p′ : Y ′ → X, i.e., there is a covering q : Y → Y ′

such that p = p′ ◦ q; this is why it is called universal. Therefore a
universal covering is unique up to an isomorphism (indeed, if Y, Y ′ are
universal then we have coverings q1 : Y → Y ′ and q2 : Y ′ → Y and
q1 ◦ q2 = q2 ◦ q1 = Id).

Example 3.2. 1. The map z 7→ zn defines an n-sheeted covering
S1 → S1.

2. The map x→ eix defines the universal covering R→ S1.

Now denote by π1(X, x) the set of homotopy classes of closed paths
on a path-connected space X, starting and ending at x. Then π1(X, x)
is a group under concatenation of paths (concatenation is associative
since the paths a(bc) and (ab)c differ only by parametrization and are
hence homotopic). This group is called the fundamental group of X
relative to the point x. It acts on the fiber p−1(x) for every covering
p : Y → X (by lifting γ ∈ π1(X, x) to Y ), which is called the action
by deck transformations. This action is transitive iff Y is path-
connected and moreover free iff Y is universal.

Finally, the group π1(X, x) does not depend on x up to an isomor-
phism. More precisely, conjugation by any path from x1 to x2 defines
an isomorphism π1(X, x1) → π1(X, x2) (although two non-homotopic
paths may define different isomorphisms if π1 is non-abelian).

Example 3.3. 1. π1(S1) = Z.
2. π1(C \ {z1, ..., zn}) = Fn is a free group in n generators.
3. We have a 2-sheeted universal covering Sn → RPn (real projective

space) for n ≥ 2. Thus π1(RPn) = Z/2 for n ≥ 2.

Exercise 3.4. Make sure you can fill all the details in this subsection!

3.2. Coverings of Lie groups. Let G be a connected (real or com-

plex) Lie group and G̃ = G̃1 be the universal covering of G, consisting

of homotopy classes of paths x : [0, 1] → G with x(0) = 1. Then G̃ is
a group via (x · y)(t) = x(t)y(t), and also a manifold.
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Proposition 3.5. (i) G̃ is a simply connected Lie group. The covering

p : G̃→ G is a homomorphism of Lie groups.

(ii) Ker(p) is a central subgroup of G̃ naturally isomorphic to π1(G) =

π1(G, 1). Thus, G̃ is a central extension of G by π1(G). In particular,
π1(G) is abelian.

Proof. We will only prove (i). We only need to show that G̃ is a Lie

group, i.e., that the multiplication map m̃ : G̃× G̃→ G̃ is regular. But

G̃× G̃ is simply connected, and m̃ is a lifting of the map

m′ := m ◦ (p× p) : G̃× G̃→ G×G→ G,

so it is regular. In other words, m̃ is regular since in local coordinates
it is defined by the same functions as m. �

Exercise 3.6. Prove Proposition 3.5(ii).

Remark 3.7. The same argument shows that more generally, the fun-
damental group of any path-connected topological group is abelian.

Example 3.8. 1. The map z 7→ zn defines an n-sheeted covering of
Lie groups S1 → S1.

2. The map x → eix defines the universal covering of Lie groups
R→ S1.

Exercise 3.9. Consider the action of SU(2) on the 3-dimensional real
vector space of traceless Hermitian 2-by-2 matrices by conjugation.

(i) Show that this action preserves the positive inner product (A,B) =
Tr(AB) and has determinant 1. Deduce that it defines a homomor-
phism φ : SU(2)→ SO(3).

(ii) Show that φ is surjective, with kernel ±1, and is a universal
covering map (use that SU(2) = S3 is simply connected). Deduce that
π1(SO(3)) = Z/2 and that SO(3) ∼= RP3 as a manifold.

This is demonstrated by the famous Dirac belt trick, which illus-
trates the notion of a spinor; namely, spinors are vectors in C2 acted
upon by matrices from SU(2). Here are some videos of the belt trick:
https://www.youtube.com/watch?v=17Q0tJZcsnY

https://www.youtube.com/watch?v=Vfh21o-JW9Q

3.3. Closed Lie subgroups.

Definition 3.10. A closed Lie subgroup of a (real or complex) Lie
group G is a subgroup which is also an embedded submanifold.

This terminology is justified by the following lemma.

Lemma 3.11. A closed Lie subgroup of G is closed in G.
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Exercise 3.12. Prove Lemma 3.11.

We also have

Theorem 3.13. Any closed subgroup of a real Lie group G is a closed
Lie subgroup.

This theorem is rather nontrivial, and we will not prove it at this
time (it will be proved much later in Exercise 36.13), but we will soon
prove a weaker version which suffices for our purposes.

Example 3.14. 1. SLn(K) is a closed Lie subgroup of GLn(K) for K =
R,C. Indeed, the equation detA = 1 defines a smooth hypersurface in
the space of matrices (show it!).

2. Let φ : R→ S1 × S1 be the irrational torus winding given by the

formula φ(x) = (eix, eix
√

2):

Then φ(R) is a subgroup of S1 × S1 but not a closed Lie subgroup,
since it is not an embedded submanifold: although φ is an immersion,
the map φ−1 : φ(R)→ R is not continuous.

3.4. Generation of connected Lie groups by a neighborhood of
the identity.

Proposition 3.15. (i) If G is a connected Lie group and U a neigh-
borhood of 1 in G then U generates G.

(ii) If f : G→ K is a homomorphism of Lie groups, K is connected,
and df1 : T1G→ T1K is surjective, then f is surjective.

Proof. (i) Let H be the subgroup of G generated by U . Then H is open
in G since H = ∪h∈HhU . Thus H is an embedded submanifold of G,
hence a closed Lie subgroup. Thus by Lemma 3.11 H ⊂ G is closed.
So H = G since G is connected.

(ii) Since df1 is surjective, by the implicit function theorem f(G)
contains some neighborhood of 1 in K. Thus it contains the whole K
by (i). �
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