Let $x \in \mathcal{X}^n$, $x = (x_1, \dots, x_n)$. Suppose $A \subseteq \mathcal{X}^n$. Define

$$V(A,x) = \{ (I(x_1 \neq y_1), \dots, I(x_n \neq y_n)) : y = (y_1, \dots, y_n) \in A \},\$$

$$U(A, x) = \text{conv } V(A, x)$$

and

$$d(A, x) = \min\{|s|^2 = \sum_{i=1}^n s_i^2, \ s \in U(A, x)\}$$

In the previous lectures, we proved

Theorem 32.1.

$$\mathbb{P}\left(d(A, x) \ge t\right) \le \frac{1}{\mathbb{P}(A)}e^{-t/4}.$$

Today, we prove

Theorem 32.2. The following are equivalent:

- (1) $d(A,x) \leq t$
- (2) $\forall \alpha = (\alpha_1, \dots, \alpha_n), \exists y \in A, \text{ s.t. } \sum_{i=1}^n \alpha_i I(x_i \neq y_i) \leq \sqrt{\sum_{i=1}^n \alpha_i^2 \cdot t}$

Proof. $(1)\Rightarrow(2)$:

Choose any $\alpha = (\alpha_1, \ldots, \alpha_n)$.

(1)
$$\min_{y \in A} \sum_{i=1}^{n} \alpha_i I(x_i \neq y_i) = \min_{s \in U(A,x)} \sum_{i=1}^{n} \alpha_i s_i \leq \sum_{i=1}^{n} \alpha_i s_i^0$$

$$\leq \sqrt{\sum_{i=1}^{n} \alpha_i^2} \sqrt{\sum_{i=1}^{n} (s_i^0)^2} \leq \sqrt{\sum_{i=1}^{n} \alpha_i^2 \cdot t}$$

where in the last inequality we used assumption (1). In the above, min is achieved at s^0 .

$$(2) \Rightarrow (1)$$
:

Let $\alpha = (s_1^0, \dots, s_n^0)$. There exists $y \in A$ such that

$$\sum_{i=1}^{n} \alpha_i I(x_i \neq y_i) \leq \sqrt{\sum_{i=1}^{n} \alpha_i^2 \cdot t}$$

Note that $\sum \alpha_i s_i^0$ is constant on L because s^0 is perpendicular to the face.

$$\sum \alpha_i s_i^0 \le \sum \alpha_i I(x_i \ne y_i) \le \sqrt{\sum \alpha_i^2 t}$$

Hence,
$$\sum (s_i^0)^2 \leq \sqrt{\sum (s_i^0)^2 t}$$
 and $\sqrt{\sum (s_i^0)^2} \leq \sqrt{t}$. Therefore, $d(A, x) \leq \sum (s_i^0)^2 \leq t$.

We now turn to an application of the above results: Bin Packing.

Example 1. Assume we have x_1, \ldots, x_n , $0 \le x_i \le 1$, and let $B(x_1, \ldots, x_n)$ be the smallest number of bins of size 1 needed to pack all (x_1, \ldots, x_n) . Let $S_1, \ldots, S_B \subseteq \{1, \ldots, n\}$ such that all x_i with $i \in S_k$ are packed into one bin, $\bigcup S_k = \{1, \ldots, n\}$, $\sum_{i \in S_k} x_i \le 1$.

Lemma 32.1. $B(x_1,\ldots,x_n) \leq 2\sum x_i + 1$

Proof. For all but one $k, \frac{1}{2} \leq \sum_{i \in S_k} x_i$. Otherwise we can combine two bins into one. Hence, $B - 1 \leq 2 \sum_k \sum_{i \in S_k} x_i = 2 \sum_i x_i$

Theorem 32.3.

$$\mathbb{P}\left(B(x_1,\ldots,x_n) \le M + 2\sqrt{\sum x_i^2 \cdot t} + 1\right) \ge 1 - 2e^{-t/4}.$$

Proof. Let $A = \{y : B(y_1, \dots, y_n) \leq M\}$, where $\mathbb{P}(B \geq M) \geq 1/2$, $\mathbb{P}(B \leq M) \geq 1/2$. We proved that

$$\mathbb{P}\left(d(A,x) \ge t\right) \le \frac{1}{\mathbb{P}(A)}e^{-t/4}.$$

Take x such that $d(A, x) \leq t$. Take $\alpha = (x_1, \dots, x_n)$. Since $d(A, x) \leq t$, there exists $y \in A$ such that $\sum x_i I(x_i \neq y_i) \leq \sqrt{\sum x_i^2 \cdot t}$.

To pack the set $\{i: x_i = y_i\}$ we need $\leq B(y_1, \ldots, y_n) \leq M$ bins.

To pack $\{i: x_i \neq y_i\}$:

$$B(x_1I(x_1 \neq y_1), \dots, x_nI(x_n \neq y_n)) \leq 2\sum x_iI(x_i \neq y_i) + 1$$

 $\leq 2\sqrt{\sum x_i^2 \cdot t} + 1$

by Lemma.

Hence,

$$B(x_1, \dots, x_n) \le M + 2\sqrt{\sum x_i^2 \cdot t} + 1$$

with probability at least $1 - 2e^{-t/4}$.

By Bernstein's inequality we get

$$\mathbb{P}\left(\sum x_i^2 \le n\mathbb{E}x_1^2 + \sqrt{n\mathbb{E}x_1^2 \cdot t} + \frac{2}{3}t\right) \ge 1 - e^{-t}.$$

Hence,

$$B(x_1,\ldots,x_n) \lesssim M + 2\sqrt{n\mathbb{E}x_1^2 \cdot t}$$