Assume we have samples $z_1 = (x_1, y_1), \dots, z_n = (x_n, y_n)$ as well as a new sample z_{n+1} . The classifier trained on the data z_1, \dots, z_n is f_{z_1, \dots, z_n} .

The error of this classifier is

$$\operatorname{Error}(z_1, \dots, z_n) = \mathbb{E}_{z_{n+1}} I(f_{z_1, \dots, z_n}(x_{n+1}) \neq y_{n+1}) = \mathbb{P}_{z_{n+1}} (f_{z_1, \dots, z_n}(x_{n+1}) \neq y_{n+1})$$

and the Average Generalization Error

A.G.E. =
$$\mathbb{E} \operatorname{Error}(z_1, \dots, z_n) = \mathbb{E}\mathbb{E}_{z_{n+1}} I(f_{z_1, \dots, z_n}(x_{n+1}) \neq y_{n+1}).$$

Since $z_1, \ldots, z_n, z_{n+1}$ are i.i.d., in expectation training on $z_1, \ldots, z_i, \ldots, z_n$ and evaluating on z_{n+1} is the same as training on $z_1, \ldots, z_{n+1}, \ldots, z_n$ and evaluating on z_i . Hence, for any i,

A.G.E. =
$$\mathbb{EE}_{z_i} I(f_{z_1,...,z_{n+1},...,z_n}(x_i) \neq y_i)$$

and

A.G.E. =
$$\mathbb{E}\left[\underbrace{\frac{1}{n+1}\sum_{i=1}^{n+1}I(f_{z_1,\dots,z_{n+1},\dots,z_n}(x_i)\neq y_i)}_{\text{leave-one-out error}}\right].$$

Therefore, to obtain a bound on the generalization ability of an algorithm, it's enough to obtain a bound on its leave-one-out error. We now prove such a bound for SVMs. Recall that the solution of SVM is $\varphi = \sum_{i=1}^{n+1} \alpha_i^0 y_i x_i$.

Theorem 4.1.

$$L.O.O.E. \le \frac{\min(\# support \ vect., D^2/m^2)}{n+1}$$

where D is the diameter of a ball containing all x_i , $i \leq n+1$ and m is the margin of an optimal hyperplane.

Remarks:

- dependence on sample size is $\frac{1}{n}$
- dependence on margin is $\frac{1}{m^2}$
- number of support vectors (sparse solution)

Lemma 4.1. If x_i is a support vector and it is misclassified by leaving it out, then $\alpha_i^0 \geq \frac{1}{D^2}$.

Given Lemma 4.1, we prove Theorem 4.1 as follows.

Proof. Clearly,

L.O.O.E.
$$\leq \frac{\text{\# support vect.}}{n+1}$$
.

Indeed, if x_i is not a support vector, then removing it does not affect the solution. Using Lemma 4.1 above,

$$\sum_{i \in \text{supp.vect}} I(x_i \text{ is misclassified}) \leq \sum_{i \in \text{supp.vect}} \alpha_i^0 D^2 = D^2 \sum \alpha_i^0 = \frac{D^2}{m^2}.$$

In the last step we use the fact that $\sum \alpha_i^0 = \frac{1}{m^2}$. Indeed, since $|\varphi| = \frac{1}{m}$,

$$\frac{1}{m^2} = |\varphi|^2 = \varphi \cdot \varphi = \varphi \cdot \sum_i \alpha_i^0 y_i x_i$$

$$= \sum_i \alpha_i^0 (y_i \varphi \cdot x_i)$$

$$= \underbrace{\sum_i \alpha_i^0 (y_i (\varphi \cdot x_i + b) - 1)}_{0} + \underbrace{\sum_i \alpha_i^0 - b}_{0} \underbrace{\sum_i \alpha_i^0 y_i}_{0}$$

$$= \underbrace{\sum_i \alpha_i^0}_{i}$$

We now prove Lemma 4.1.

Proof. Define

$$w(\alpha) = \sum \alpha_i - \frac{1}{2} \left(\sum \alpha_i y_i x_i \right)^2,$$

which we maximize under constraints

(1)
$$\alpha_i \ge 0 \quad \text{and} \quad \sum y_i \alpha_i = 0.$$

2

Assume the following ordering on the support vectors when trained on $z_1, \ldots, z_n, z_{n+1}$:

$$\underbrace{\alpha_1^0, \dots, \alpha_k^0, 0, \dots, 0}_{-} = \alpha^0$$

where the first k points are the support vectors. Now, assume we leave out x_1 and make a mistake on it, and

$$\alpha_1 = 0.$$

Now we have

$$\underbrace{0,\ldots,0}_{\beta(i)=1},\underbrace{\alpha_1',\ldots,\alpha_\ell',0,\ldots,0}_{\beta(i)=0} = \alpha'$$

where $\beta \in \{0,1\}^n$.

Let t > 0 and suppose $\alpha' + t\beta$ satisfies optimization conditions (1). We know that

$$w(\alpha' + t\beta) \le w(\alpha^0).$$

Hence,

$$w(\alpha^0) - w(\alpha') \ge w(\alpha + t\beta) - w(\alpha').$$

Moreover,

$$w(\alpha') = \sum \alpha'_i - \frac{1}{2} \left(\sum \alpha'_i y_i x_i \right)^2$$

and

$$w(\alpha' + t\beta) = \sum \alpha_i' + t \sum \beta_i - \frac{1}{2} \left(\sum \alpha_i' y_i x_i + t \sum \beta_i y_i x_i \right)^2$$
$$= \sum \alpha_i' + t \sum \beta_i - \frac{1}{2} \left(\sum \alpha_i' y_i x_i \right)^2 - t \sum \alpha_i' y_i x_i \cdot \sum \beta_i y_i x_i - \frac{t^2}{2} \left(\sum \beta_i y_i x_i \right)^2.$$

Hence,

$$w(\alpha' + t\beta) - w(\alpha') = t \sum_{\varphi_i} \beta_i - t \underbrace{\sum_{\varphi_i'} \alpha_{i}' y_i x_i}_{\varphi_i'} \cdot \sum_{\varphi_i'} \beta_i y_i x_i - \frac{t^2}{2} \left(\sum_{\varphi_i'} \beta_i y_i x_i\right)^2$$

$$= t \sum_{\varphi_i} \beta_i (1 - y_i \varphi' \cdot x_i) - \frac{t^2}{2} \left(\sum_{\varphi_i'} \beta_i y_i x_i\right)^2$$

$$= t \sum_{\varphi_i'} \beta_i (1 - y_i (\varphi' \cdot x_i + b)) + tb \underbrace{\sum_{\varphi_i'} \beta_i y_i}_{0} - \frac{t^2}{2} \left(\sum_{\varphi_i'} \beta_i y_i x_i\right)^2$$

$$= t(1 - y_1 (\varphi' \cdot x_1 + b)) - \frac{t^2}{2} \left(\sum_{\varphi_i'} \beta_i y_i x_i\right)^2$$

Maximizing the above expression over t, we find

$$t = \frac{1 - y_1(\varphi' \cdot x_1 + b)}{\left(\sum \beta_i y_i x_i\right)^2} \ge 0.$$

Substituting this t back into the expression,

$$w(\alpha' + t\beta) - w(\alpha') = \frac{(1 - y_1(\varphi' \cdot x_1 + b))^2}{2(\sum \beta_i y_i x_i)^2}$$

Since x_1 is misclassified, $y_1(\varphi' \cdot x_1 + b) \leq 0$. Hence,

$$w(\alpha' + t\beta) - w(\alpha') \ge \frac{1}{2\left(\sum \beta_i y_i x_i\right)^2} \ge \frac{1}{2D^2}$$

because $|x_1 - x_2| \leq D$.

Now define γ as $\gamma(1)=\alpha_1^0,\,\gamma(i)=\alpha_i^0$ for $p\leq i\leq k,$ and $\gamma(i)=0$ otherwise, where

$$\underbrace{\alpha_1^0,\ldots,\alpha_p^0,\ldots,\alpha_k^0,0,\ldots,0}_{+}$$
.

We have

$$w(\alpha^0) - w(\alpha') \ge \frac{1}{2D^2}$$

and $\alpha^0 - \gamma$ satisfies constraint (2) and

$$w(\alpha^0 - \gamma) \le w(\alpha').$$

$$w(\alpha^{0}) - w(\alpha') \leq w(\alpha^{0}) - w(\alpha^{0} - \gamma) = \dots \text{ similarly to the previous proof}$$

$$= \frac{1}{2} \left(\sum \gamma_{i} y_{i} x_{i} \right)^{2} = \frac{(\alpha_{1}^{0})^{2}}{2} \left(\sum \frac{\gamma_{i}}{\alpha_{1}^{0}} y_{i} x_{i} \right)^{2}$$

$$= x_{1} - \sum_{i=p}^{k} \frac{\gamma_{i}}{\alpha_{1}^{0}} x_{i} \leq \frac{(\alpha_{1}^{0})^{2}}{2} \cdot D^{2}$$

$$\text{convex combination}$$

Hence,

$$\frac{1}{2D^2} \le w(\alpha^0) - w(\alpha') \le \frac{(\alpha_1^0)^2}{2} \cdot D^2$$

and so

$$\alpha_1^0 \ge \frac{1}{D^2}.$$