Lecture 11 Optimistic VC inequality. 18.465

Last time we proved the Pessimistic VC inequality:
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. In this lecture we will prove Optimistic VC inequality, which
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Hence, the rate is %

will improve on this rate when P (C') is small.

As before, we have pairs (X;,Y;), Y; = £1. These examples are labeled according to some
unknown Cj such that Y =1if X =Cpand Y =0 if X ¢ C.

Let C ={C: C C X}, a set of classifiers. C' makes a mistake if

X €C\CoUCy\ C =CAC.

Similarly to last lecture, we can derive bounds on
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where P (CAC)) is the generalization error.

Let C' = {CACy : C € C}. One can prove that VC(C') < VC(C) and A, (C", Xy, ..., X,) <
DN (C X, X)),

By Hoeffding-Chernoff, if P (C) < 1,
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Theorem 11.1 (Optimistic VC inequality).
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Proof. Let C be fixed. Then
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whenever P(C) > 1. Indeed, P(C) > < since 3.1 | I(X] € C) > nP(C) > 1. Otherwise
PO (X eC)=0)=][.,P(X] ¢ C)=(1-P(C))" can be as close to 0 as we want.

Similarly to the proof of the previous lecture, let
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Hence, there exists C'x such that
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Hint: use the fact that ¢(s) = *72 = /s — U5 is increasing in s.
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From the above exercise it follows that
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Since indicator is 0, 1-valued,
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The last expression can be upper-bounded by Hoeffding’s inequality as follows:
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since upper sum in the exponent is bigger than the lower sum (compare term-by-term)
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