18.408 Topics in Theoretical Computer Science Fall 2022 Problem Set 5

Not for submission

1. In this problem we will show that for every $\varepsilon, \delta>0$ the problem gap-3-SAT $\left[1-\varepsilon, \frac{7}{8}+\delta\right]$ is NP-hard.
(a) Let Σ_{L}, Σ_{R} be finite sets and suppose that $\pi: \Sigma_{L} \rightarrow \Sigma_{R}$ is a projection map. Consider the distribution μ over (x, y, z) where $x, y \in\{0,1\}^{\Sigma_{L}}$ and $z \in\{0,1\}^{\Sigma_{R}}$ sampled in the following way:

- Sample $z \in\{0,1\}^{\Sigma_{R}}$ and $x \in\{0,1\}^{\Sigma_{L}}$ uniformly.
- Let $y^{\prime}=\pi_{u, v}^{-1}(1-z)$ and sample $g \in\{0,1\}^{\Sigma_{L}}$ be sampled by taking for each $i \in \Sigma_{L}$ independently $g_{i}=1$ with probability ε and otherwise $g_{i}=0$.
- Take $y=x+y^{\prime}+g$.

Show that the marginal distribution of each one of x, y, z is uniform over its respective domain, and also that the marginal distribution over each one of $(x, y),(y, z)$ and (x, z) is uniform over its respective domain.
(b) Let $f:\{0,1\}^{\Sigma_{L}} \rightarrow\{0,1\}$ and $g:\{0,1\}^{\Sigma_{R}} \rightarrow\{0,1\}$ be dictatorship functions, that is, $f(x)=$ x_{i} and $g(z)=z_{j}$ where the dictators satisfy the projection constraint $\pi(i)=j$. Show that

$$
\underset{(x, y, z) \sim \mu}{\mathbb{E}}[f(x) \vee f(y) \vee g(z)] \geqslant 1-\varepsilon .
$$

(c) Let $f:\{0,1\}^{\Sigma_{L}} \rightarrow\{0,1\}$ and $g:\{0,1\}^{\Sigma_{R}} \rightarrow\{0,1\}$ be functions such that $\mathbb{E}[f]=\mathbb{E}[g]=1 / 2$, and denote $F(x)=(-1)^{f(x)}$ and $G(z)=(-1)^{g(z)}$. Show that

$$
\underset{(x, y, z) \sim \mu}{\mathbb{E}}[f(x) \vee f(y) \vee g(z)]-\frac{7}{8} \leqslant \sum_{\alpha \in \mathbb{F}_{2}^{\Sigma_{L}}}(1-\varepsilon)^{|\alpha|} \widehat{F}(\alpha)^{2} \widehat{G}\left(\pi_{\text {odd }}^{-1}(\alpha)\right)
$$

(d) Show that for every $\varepsilon, \delta>0$ there is $\eta>0$ such that there is a polynomial time reduction from gap-LabelCover $[1, \eta]$ over an alphabet of constant size to gap-3SAT $\left[1-\varepsilon, \frac{7}{8}+\delta\right]$. Deduce that gap-3SAT $\left[1-\varepsilon, \frac{7}{8}+\delta\right]$ is NP-hard.
2. An instance of the problem $2-\operatorname{Lin}_{\mathbb{F}_{2}}$ consists of a set of variables X and a set of equations E, each equation of the form $x-y=b$ where $x, y \in X$ are variables and $b \in \mathbb{F}_{2}$ is a constant. In this problem, we will design a surprisingly good approximation algorithm for 2-Lin, showing that for sufficiently small $\varepsilon>0$, given an instance which is at least $1-\varepsilon$ satisfiable, finds (in polynomial time) a solution satisfying at least $1-\Theta(\sqrt{\varepsilon})$ fraction of the equations. For simplicity, we assume that half of the equations have $b=0$, and half of them have $b=1$.
(a) Write down an integer program formulation of the Max-2-Lin \mathbb{F}_{2}.
(b) Write down a semi-definite program relaxation of Max-2-Lin $\mathbb{F}_{\mathbb{F}_{2}}$ in the variables $\left\{V_{x}\right\}_{x \in X}$, and argue that if (X, E) is at least $1-\varepsilon$ satisfiable then there is a vector valued solution satisfying that

$$
\sum_{e \in E: x(e)-y(e)=0}\left\langle V_{x(e)}, V_{y(e)}\right\rangle-\sum_{e \in E: x(e)-y(e)=1}\left\langle V_{x(e)}, V_{y(e)}\right\rangle \geqslant m(1-\varepsilon) .
$$

Conclude that

$$
\sum_{e \in E: x(e)-y(e)=0}\left\langle V_{x(e)}, V_{y(e)}\right\rangle \geqslant \frac{m}{2}(1-2 \varepsilon), \quad-\sum_{e \in E: x(e)-y(e)=1}\left\langle V_{x(e)}, V_{y(e)}\right\rangle \geqslant \frac{m}{2}(1-2 \varepsilon) .
$$

(c) Using the fact that such vector valued solution may be found efficiently, design a rounding procedure which produces an integral solution to (X, E). Namely, sampling a vector $h \in \mathbb{R}^{n}$ and defining the assignment $A(x)=1$ if $\left\langle h, V_{x}\right\rangle>0$ and $A(x)=0$ otherwise, show that for all $e \in E$ of the form $x(e)-y(e)=0$,

$$
\underset{h}{\operatorname{Pr}}[A \text { satisfies e }]=1-\frac{1}{\pi} \operatorname{Arccos}\left(\left\langle V_{x(e)}, V_{y(e)}\right\rangle\right),
$$

and for all $e \in E$ of the form $x(e)-y(e)=1$,

$$
\underset{h}{\operatorname{Pr}}[A \text { satisfies e }]=\frac{1}{\pi} \operatorname{Arccos}\left(\left\langle V_{x(e)}, V_{y(e)}\right\rangle\right) .
$$

(d) Show that for $z \in[0,1]$ it holds that $\operatorname{Arccos}(1-z) \leqslant 2 \sqrt{z}$, and deduce that if $\alpha_{1}, \ldots, \alpha_{r} \in[0,1]$ are such that $\mathbb{E}_{i}\left[\alpha_{i}\right] \geqslant 1-2 \varepsilon$, then $\mathbb{E}_{i}\left[\operatorname{Arccos}\left(\alpha_{i}\right)\right] \leqslant 2 \sqrt{2 \varepsilon}$.
(e) Deduce that

$$
\sum_{e \in E} \operatorname{Pr}_{h}[A \text { satisfies e }] \geqslant m(1-O(\sqrt{\varepsilon})),
$$

3. Show a polynomial time reduction from gap- d-to-1-Games $[1, \varepsilon]$ to gap-UniqueGames $[1 / d, \varepsilon]$.
4. (*) In this question, we will consider the following seemingly stronger form of the Unique-Games Conjecture, and show that it is implied by the standard formulation of it.

Conjecture 0.1 (Strong UGC). For all $\varepsilon, \delta>0$ there is $k \in \mathbb{N}$, such that given an instance $\psi=(G=$ $\left.(L \cup R, E), \Sigma, \Phi=\left\{\phi_{e}\right\}\right)$ over a regular graph G with alphabet size k it is NP-hard to distinguish between the following two cases:

- YES case: there is $L^{\prime} \subseteq L$ of fractional size at least $1-\varepsilon$ and assignments $A_{L^{\prime}}: L^{\prime} \rightarrow \Sigma$ and $A_{R}: R \rightarrow \Sigma$ that satisfy all of the constraints between L^{\prime} and R.
- NO case: no pair of assignments $A_{L}: L \rightarrow \Sigma$ and $A_{R}: R \rightarrow \Sigma$ satisfy more than δ fraction of the constraints.

We will show that for all $\varepsilon, \delta>0$ and k there are $\eta, \xi>0$ and k^{\prime} such that gap-UG[1-,$\left.\xi\right]$ with alphabet size k is polynomial time reducible to gap-StrongUGC $[1-\varepsilon, \delta]$ with alphabet size k^{\prime}. Denote $H=1 / \eta^{1 / 4}$.
(a) Suppose that we have an instance Ψ of Unique-Games such that $\operatorname{val}(\Psi) \geqslant 1-\eta$ and pair of assignments A_{L}, A_{R} that satisfy at least $1-\eta$ fraction of the constraints. Show that for at least $1-\sqrt{\eta}$ of the vertices $u \in L$, we have that

$$
\operatorname{Pr}_{v_{1}, \ldots, v_{H} \text { neighbours of } u}\left[\left(u, v_{i}\right) \text { is satisfied by } A_{L}, A_{R} \text { for all } i\right] \geqslant 1-\eta^{1 / 4} .
$$

(b) Suppose that we have an instance Ψ of Unique-Games such that $\operatorname{val}(\Psi) \leqslant \xi$, and we fix a pair of assignments A_{L}, A_{R}. Show for all but at most $\sqrt{\xi}$ of the vertices $u \in L$, we have that

$$
\operatorname{Pr}_{v_{1}, \ldots, v_{H}} \text { neighbours of } u\left[\text { more than }(\sqrt{\xi}+\varepsilon) H \text { of }\left(u, v_{i}\right) \text { are satisfied by } A_{L}, A_{R}\right] \leqslant 2^{-\Omega\left(\varepsilon^{2} H\right)} \text {. }
$$

(c) Based on the previous two question, construct a poly-time reduction to show that the standard formulation of UGC implies the above strong formulation of UGC.

MIT OpenCourseWare
https://ocw.mit.edu

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs

 Fall 2022For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

