18.408 Topics in Theoretical Computer Science Fall 2022 Problem Set 5

Not for submission

- 1. In this problem we will show that for every $\varepsilon, \delta > 0$ the problem gap-3-SAT $[1 \varepsilon, \frac{7}{8} + \delta]$ is NP-hard.
 - (a) Let Σ_L , Σ_R be finite sets and suppose that $\pi \colon \Sigma_L \to \Sigma_R$ is a projection map. Consider the distribution μ over (x, y, z) where $x, y \in \{0, 1\}^{\Sigma_L}$ and $z \in \{0, 1\}^{\Sigma_R}$ sampled in the following way:
 - Sample $z \in \{0, 1\}^{\Sigma_R}$ and $x \in \{0, 1\}^{\Sigma_L}$ uniformly.
 - Let $y' = \pi_{u,v}^{-1}(1-z)$ and sample $g \in \{0,1\}^{\Sigma_L}$ be sampled by taking for each $i \in \Sigma_L$ independently $g_i = 1$ with probability ε and otherwise $g_i = 0$.
 - Take y = x + y' + g.

Show that the marginal distribution of each one of x, y, z is uniform over its respective domain, and also that the marginal distribution over each one of (x, y), (y, z) and (x, z) is uniform over its respective domain.

(b) Let $f: \{0,1\}^{\Sigma_L} \to \{0,1\}$ and $g: \{0,1\}^{\Sigma_R} \to \{0,1\}$ be dictatorship functions, that is, $f(x) = x_i$ and $g(z) = z_j$ where the dictators satisfy the projection constraint $\pi(i) = j$. Show that

$$\mathop{\mathbb{E}}_{(x,y,z)\sim\mu}\left[f(x)\vee f(y)\vee g(z)\right]\geqslant 1-\varepsilon.$$

(c) Let $f: \{0,1\}^{\Sigma_L} \to \{0,1\}$ and $g: \{0,1\}^{\Sigma_R} \to \{0,1\}$ be functions such that $\mathbb{E}[f] = \mathbb{E}[g] = 1/2$, and denote $F(x) = (-1)^{f(x)}$ and $G(z) = (-1)^{g(z)}$. Show that

$$\mathop{\mathbb{E}}_{(x,y,z)\sim\mu}[f(x)\vee f(y)\vee g(z)] - \frac{7}{8} \leqslant \sum_{\alpha\in\mathbb{F}_2^{\Sigma_L}} (1-\varepsilon)^{|\alpha|} \widehat{F}(\alpha)^2 \ \widehat{G}(\pi_{\mathsf{odd}}^{-1}(\alpha)) \ .$$

- (d) Show that for every ε, δ > 0 there is η > 0 such that there is a polynomial time reduction from gap-LabelCover[1, η] over an alphabet of constant size to gap-3SAT[1 ε, ⁷/₈ + δ]. Deduce that gap-3SAT[1 ε, ⁷/₈ + δ] is NP-hard.
- 2. An instance of the problem 2-Lin_{F2} consists of a set of variables X and a set of equations E, each equation of the form x − y = b where x, y ∈ X are variables and b ∈ F₂ is a constant. In this problem, we will design a surprisingly good approximation algorithm for 2-Lin, showing that for sufficiently small ε > 0, given an instance which is at least 1 − ε satisfiable, finds (in polynomial time) a solution satisfying at least 1 − Θ(√ε) fraction of the equations. For simplicity, we assume that half of the equations have b = 0, and half of them have b = 1.
 - (a) Write down an integer program formulation of the Max-2-Lin_{\mathbb{F}_2}.

(b) Write down a semi-definite program relaxation of Max-2-Lin_{F2} in the variables {V_x}_{x∈X}, and argue that if (X, E) is at least 1 − ε satisfiable then there is a vector valued solution satisfying that

$$\sum_{e \in E: x(e) - y(e) = 0} \langle V_{x(e)}, V_{y(e)} \rangle - \sum_{e \in E: x(e) - y(e) = 1} \langle V_{x(e)}, V_{y(e)} \rangle \ge m(1 - \varepsilon).$$

Conclude that

$$\sum_{e \in E: x(e) - y(e) = 0} \langle V_{x(e)}, V_{y(e)} \rangle \ge \frac{m}{2} (1 - 2\varepsilon), \qquad -\sum_{e \in E: x(e) - y(e) = 1} \langle V_{x(e)}, V_{y(e)} \rangle \ge \frac{m}{2} (1 - 2\varepsilon).$$

(c) Using the fact that such vector valued solution may be found efficiently, design a rounding procedure which produces an integral solution to (X, E). Namely, sampling a vector h ∈ ℝⁿ and defining the assignment A(x) = 1 if ⟨h, V_x⟩ > 0 and A(x) = 0 otherwise, show that for all e ∈ E of the form x(e) − y(e) = 0,

$$\Pr_{h} \left[A \text{ satisfies } \mathbf{e} \right] = 1 - \frac{1}{\pi} \mathsf{Arccos}(\langle V_{x(e)}, V_{y(e)} \rangle),$$

and for all $e \in E$ of the form x(e) - y(e) = 1,

$$\Pr_{h} \left[A \text{ satisfies } \mathbf{e} \right] = \frac{1}{\pi} \mathsf{Arccos}(\langle V_{x(e)}, V_{y(e)} \rangle).$$

- (d) Show that for $z \in [0, 1]$ it holds that $\operatorname{Arccos}(1-z) \leq 2\sqrt{z}$, and deduce that if $\alpha_1, \ldots, \alpha_r \in [0, 1]$ are such that $\mathbb{E}_i [\alpha_i] \geq 1 2\varepsilon$, then $\mathbb{E}_i [\operatorname{Arccos}(\alpha_i)] \leq 2\sqrt{2\varepsilon}$.
- (e) Deduce that

$$\sum_{e \in E} \Pr_h \left[A \text{ satisfies e} \right] \geqslant m(1 - O(\sqrt{\varepsilon})),$$

- 3. Show a polynomial time reduction from gap-d-to-1-Games $[1, \varepsilon]$ to gap-UniqueGames $[1/d, \varepsilon]$.
- 4. (*) In this question, we will consider the following seemingly stronger form of the Unique-Games Conjecture, and show that it is implied by the standard formulation of it.

Conjecture 0.1 (Strong UGC). For all ε , $\delta > 0$ there is $k \in \mathbb{N}$, such that given an instance $\psi = (G = (L \cup R, E), \Sigma, \Phi = \{\phi_e\})$ over a regular graph G with alphabet size k it is NP-hard to distinguish between the following two cases:

- YES case: there is $L' \subseteq L$ of fractional size at least 1ε and assignments $A_{L'} \colon L' \to \Sigma$ and $A_R \colon R \to \Sigma$ that satisfy all of the constraints between L' and R.
- NO case: no pair of assignments $A_L: L \to \Sigma$ and $A_R: R \to \Sigma$ satisfy more than δ fraction of the constraints.

We will show that for all $\varepsilon, \delta > 0$ and k there are $\eta, \xi > 0$ and k' such that gap-UG[$1 - \eta, \xi$] with alphabet size k is polynomial time reducible to gap-StrongUGC[$1 - \varepsilon, \delta$] with alphabet size k'. Denote $H = 1/\eta^{1/4}$.

(a) Suppose that we have an instance Ψ of Unique-Games such that $val(\Psi) \ge 1 - \eta$ and pair of assignments A_L, A_R that satisfy at least $1 - \eta$ fraction of the constraints. Show that for at least $1 - \sqrt{\eta}$ of the vertices $u \in L$, we have that

$$\Pr_{v_1,\ldots,v_H \text{ neighbours of } u} [(u, v_i) \text{ is satisfied by } A_L, A_R \text{ for all } i] \ge 1 - \eta^{1/4}.$$

(b) Suppose that we have an instance Ψ of Unique-Games such that $\mathsf{val}(\Psi) \leq \xi$, and we fix a pair of assignments A_L, A_R . Show for all but at most $\sqrt{\xi}$ of the vertices $u \in L$, we have that

 $\Pr_{v_1,\ldots,v_H \text{ neighbours of } u} \left[\text{ more than } (\sqrt{\xi} + \varepsilon) H \text{ of } (u, v_i) \text{ are satisfied by } A_L, A_R \right] \leqslant 2^{-\Omega(\varepsilon^2 H)}.$

(c) Based on the previous two question, construct a poly-time reduction to show that the standard formulation of UGC implies the above strong formulation of UGC.

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs Fall 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.