# 18.408 Topics in Theoretical Computer Science Fall 2022 Problem Set 4 

## Basics of Discrete Fourier Analysis

1. Write down the discrete Fourier expansion of the following functions:
(a) $f:\{0,1\}^{2} \rightarrow\{0,1\}$ defined by $f(x, y)=x \vee y$.
(b) $f:\{0,1\}^{3} \rightarrow\{0,1\}$ defined by $f(x, y, z)=x \vee y \vee z$.
(c) $f:\{0,1\}^{3} \rightarrow\{0,1\}$ defined by $f(x, y, z)=$ Not $-\operatorname{All}-\operatorname{Equal}(x, y, z)$. That is, $f(x, y, z)=1$ if and only if not all of $x, y, z$ are equal.
(d) $f:\{0,1\}^{t} \rightarrow\{0,1\}$ defined by $f\left(x_{1}, \ldots, x_{t}\right)=x_{1} \wedge \ldots \wedge x_{t}$.
2. A function $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is called odd if $f(x)=-f(1-x)$ for all $x \in\{0,1\}^{n}$. Similarly, a function is called even if $f(x)=f(1-x)$ for all $x \in\{0,1\}^{n}$.
(a) Show that if $f$ is odd, then for each $\alpha \in \mathbb{F}_{2}^{n}$ of even Hamming weight it holds that $\widehat{f}(\alpha)=0$.
(b) Show that every function $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ can be written as a sum of two functions, $f_{\text {even }}:\{0,1\}^{n} \rightarrow\{-1,0,1\}$ which is even and $f_{\text {odd }}:\{0,1\}^{n} \rightarrow\{-1,0,1\}$ which is odd.
3. Let $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ be a function, and consider the following variant of the linearity tester with 4-queries: sample $x, y, z \in\{0,1\}^{n}$ uniformly and check that $f(x+y+z)=f(x) f(y) f(z)$.
(a) Prove that for any $f:\{0,1\}^{n} \rightarrow\{-1,1\}$, the probability that $f$ passes the test is at least $1 / 2$.
(b) Show that if $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ passes the test with probability at least $1 / 2+\varepsilon$, then there is $\alpha \in \mathbb{F}_{2}^{n}$ such that $\hat{f}(\alpha) \geqslant \sqrt{2 \varepsilon}$.
4. Let $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ be a function, and let $i \in[n]$. The influence of variable $i$ is defined as $I_{i}[f]=\operatorname{Pr}_{x}\left[f(x) \neq f\left(x \oplus e_{i}\right)\right]$, and the total influence of $f$ is defined as $I[f]=\sum_{i=1}^{n} I_{i}[f]$.
(a) Show that $I_{i}[f]=\sum_{\alpha \in \mathbb{F}_{2}^{n}: \alpha_{i}=1} \widehat{f}(\alpha)^{2}$ and $I[f]=\sum_{\alpha \in \mathbb{F}_{2}^{n}}|\alpha| \widehat{f}(\alpha)^{2}$.
(b) The variance of $f, \operatorname{var}(f)$, is defined as the variance of $f(x)$ as a random variable where $x$ is chosen uniformly, that is, $\operatorname{var}(f)=\mathbb{E}_{x}\left[(f(x)-\mathbb{E}[f])^{2}\right]$. Show that $\operatorname{var}(f)=\sum_{\alpha \in \mathbb{F}_{2}^{n} \backslash\{\overrightarrow{0}\}} \widehat{f}(\alpha)^{2}$ and deduce Poincare's inequality, stating that $I[f] \geqslant \operatorname{var}(f)$.

## Efficient Amplification of Linearity Tests

Recall the linearity test from class checking that $f(x+y)=f(x) f(y)$ where $x, y$ are sampled uniformly. We proved that the soundness of this test is $1 / 2$, hence sampling $t$ pairs $(x(i), y(i))$ and checking that $f(x(i)+y(i))=f(x(i)) f(y(i))$ yields a test with soundness $2^{-t}$ and $3 t$ queries. In this question, we will show that there is a test that gets a better, essentially optimal, tradeoff between the number of queries and soundness: it makes $\binom{t}{2}+O(t)$ queries and has soundness $2^{-\binom{t}{2}}$.
5. (*) Let $G=([t], E)$ be the complete undirected graph on $t$ vertices, and let $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ be a function.
(a) Let $x(1), \ldots, x(t), y, z$ be sampled uniformly from $\{0,1\}^{n}$. Show that

$$
\underset{x(1), \ldots, x(t), y, z}{\mathbb{E}}\left[f(y) f(z) \prod_{i=1}^{t} f(x(i)+y) f(x(i)+z)\right] \leqslant \max _{\alpha \in \mathbb{F}_{2}^{n}} \widehat{f}(\alpha)^{2}
$$

(b) Let $x(1), \ldots, x(t)$ be sampled uniformly from $\{0,1\}^{n}$. Show that

$$
\underset{x(1), \ldots, x(t)}{\mathbb{E}}\left[\prod_{\{i, j\} \in E} f(x(i)) f(x(j)) f(x(i)+x(j))\right] \leqslant \max _{\alpha \in \mathbb{F}_{2}^{n}} \widehat{f}(\alpha) .
$$

(c) Show that the result of the previous item holds for all non-empty sets of edges $S \subseteq E$. That is, if $S \subseteq E$ is non-empty, then

$$
\underset{x(1), \ldots, x(t)}{\mathbb{E}}\left[\prod_{\{i, j\} \in S} f(x(i)) f(x(j)) f(x(i)+x(j))\right] \leqslant \max _{\alpha \in \mathbb{F}_{2}^{n}} \widehat{f}(\alpha) .
$$

(d) Consider the following linearity test for $f$ :

- Sample $x(1), \ldots, x(t)$ uniformly from $\{0,1\}^{n}$.
- Check that $f(x(i)+x(j))=f(x(i)) f(x(j))$ for all $i \neq j$.

Establish the following properties of the test:
i. Show that this test has perfect soundness. Namely, if $f=\chi_{\alpha}$ for $\alpha \in \mathbb{F}_{2}^{n}$, then $f$ passes the test with probability close to 1 .
ii. Show that the probability that $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ passes this test is equal to

$$
\underset{(x(1), \ldots, x(t))}{\mathbb{E}}\left[\sum_{S \subseteq E} \frac{1}{2^{\left.2^{t}\right)}} \prod_{\{i, j\} \in S} f(x(i)+x(j)) f(x(i)) f(x(j))\right] .
$$

Deduce that

$$
\operatorname{Pr}[f \text { passes the test }]-2^{-\binom{t}{2}} \leqslant \max _{\alpha \in \mathbb{F}_{2}^{n}} \widehat{f}(\alpha)
$$

Remark 0.1. The result above can be used to prove near optimal hardness result for clique, as follows. Based on this exercise, one can construct a PCP with $T=\binom{t}{2}+2 t$ queries and soundness $2^{-\binom{t}{2}}$; this reduction uses the same outline as the 3-Lin result shown in class (using a noisy version of the above test instead of the noisy linearity test). Running the technique from Problem 5 in the 3rd problem set on this PCP, one can prove NP-hardness of the Max-Clique problem within factor $N^{1-\delta}$ for all $\delta>0$.

MIT OpenCourseWare
https://ocw.mit.edu

### 18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs

 Fall 2022For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

