

18.218 Topics in Theoretical Computer Science Fall 2022
Problem Set 3

1. In this question, we show the equivalence between the verifer view of PCPs and the combinatorial
view.

(a) Suppose that gap-CSG[1, δ] is NP-hard on instances of q queries and alphabet size h. Show that
there exists a probabilistic verifer for 3-SAT that on a 3CNF formula ϕ and a witness w, uses
O(log n) random bits and reads at most q log h bits from the witness w such that:
Completeness: If ϕ ∈ 3-SAT, then there is a w such that the verifer accepts with probability 1.
Soundness: If ϕ ̸∈ 3-SAT, then for all w, the probability that the verifer accepts is at most δ.

(b) Show the other direction. Namely, show that if 3-SAT has a probabilistic verifer for 3-SAT as
above reading at most q bits from the witness, then gap-CSG[1, δ] is NP-hard on instances of q
queries and alphabet size 2.

2. In this question, we show that gap-3SAT[1, 1 − ε] is NP-hard for some absolute constant ε > 0.

(a) Let P : {0, 1}k → {0, 1} be any function whose input is x ∈ {0, 1}k . Show that there exists a
k-CNF formula ϕ : {0, 1}k → {0, 1} such that ϕ(x) = P (x) for all x ∈ {0, 1}k .

(b) Let P : {0, 1}k → {0, 1} be any function whose input is x ∈ {0, 1}k . Show that there exists a
3-CNF formula ϕ : {0, 1}k+m → {0, 1} of size at most 2O(k) satisfying:
Completeness: if x ∈ {0, 1}k is such that P (x) = 1, then there is y ∈ {0, 1}m for which
ϕ(x, y) = 1.
Soundness: if x ∈ {0, 1}k is such that P (x) = 0, then for all y ∈ {0, 1}m , ϕ(x, y) = 0.

(c) Assuming the PCP theorem, namely that gap-CSG[1, 1 − ε] is NP-hard on instances with O(1)
queries, alphabet size 2 and ε > 0 absolute constant, show that there is ε ′ > 0 such that gap-
3SAT[1, 1 − ε ′] is NP-hard.

3. In the next two problems, we convert the PCP with poly-logarithmically many queries to a corre-
sponding hardness result about Quadratic Solvability with poly-logarithmically many queries.

Circuits. Recall that a circuit C(x1, . . . , xm) on m variables is a directed acyclic graph. m of its
nodes have in-degree 0 and are labeled by input variables xi; any other node is labeled by one of: OR,
AND, NOT. A circuit has a unique node of out-degree 0, which is the output of the circuit; each node
labeled by OR or AND has in-degree 2, and each node labeled by NOT has in-degree 1. On input
x ∈ {0, 1}m, the value is computed from the leafs (the input nodes) to the root. The value of a node is
the logical value of the operation labeling it when applied on the Boolean values of its children. The
size of a circuit C is defned to be the number of nodes plus the number of edges in the graph.

Let P : {0, 1}m → {0, 1} be a function computable by a circuit C of size at most poly(m). Show that
′there is a system of quadratic equations (X, E) in x and m = poly(m) auxiliary variables y that has

poly(m) many equations such that for every x ∈ {0, 1}m ,

1

P
i

inspect
the constraints in the CSG in the previous question, and show that they correspond to a predicate
P : {0, 1}m→ {0, 1} that is computable in polynomial time. Use the fact that a polynomial-time
computable function can be computed by a polynomial-size circuit

you may want to use Chernoff’s bound, stating
that if Z1, ..., Zm are Boolean �independent ide �ntically distributed random variable with

E[Zi] = µ, then for s⩾ 2 it holds that Pr Zi⩾ smµ⩽ e−
1
10

smµ

• If P (x) = 1, then there is y ∈ {0, 1}m ′ such that x, y solve (X, E).
• If P (x) = 0, then for all y ∈ {0, 1}m ′ it holds that x, y does not solve (X, E).

4. We are now going to show a reduction from CSG to QS that preserves poly-log query complexity.

(a) Starting with the fact that for all ε > 0 the problem gap-CSG[1, ε] is NP-hard for instances with
poly(log n) queries and alphabet size poly(log n), show that for all δ > 0 the problem gap-
CSG[1, δ] is NP-hard on instances with poly(log n) queries and alphabet size 2.

(b) Show that for all ε > 0 there is q > 0 such that the problem gap-QSq,r=poly(log n)[1, ε] is NP-
hard. Here, q is the field size and r is the number of variables appearing in each equation.

5. In this question we show an improved hardness of approximation result for clique via randomized
reductions. Let Ψ= (G = (L ∪ R, E), ΣL, ΣR, Φ = {Φe}e∈E) be a label cover instance with
alphabet size at most C, and denote t = 100C log n. Let ε > 0 and denote M = ⌈10t(1 − ε)−t⌉.
Consider the following randomized set of constraints on L ∪ R: for i = 1, . . . , M , sample t of the
edges e1, . . . , et ∈ E randomly, and let the constraint Ci be the AND of the constraints Φe1 , . . . , Φet .

(a) Show that if Ψ is satisfiable, then there is an assignment to L ∪ R satisfying all of the Ci’s.
(b) Show that if Ψ is at most (1 − ε)-satisfiable, then with probability 1 − o(1) at most 2(1 − ε)tM

of the constraints C1, . . . , CM can be satisfied.

(c) Construct the graph G = (V, E) from the constraints C1, . . . , CM as in class: for each i =
1, . . . ,M and a satisfying assignment α to the variables of Ci, construct a node vi,α in G.
Connect vi,α and vj,β by an edge if they are consistent on all variables shared between Ci and
Cj .

i. Show that if Ψ is satisfable, then G contains a clique of size at least M .
ii. Show that if Ψ is at most (1 − ε) satisfable, then with probability 1 − o(1) the graph G

doesn’t contain a clique of size 2(1 − ε)tM .
iii. Show that the graph G has at most N = CtM nodes.
iv. Conclude that there is an absolute constant δ > 0, such that approximating the Maximum-

Clique problem on N vertices within factor N δ is NP-hard under polynomial time random-
ized reductions.

6. (*) In the next problem, we will complete the missing ingredient in the proof of the PCP theorem by
explaining the composition step that reduces from poly(log n) queries to poly(log log n) queries.

Explain the steps of a reduction from instances of gap-CSG[1, 1 − ε] with poly(log n) queries and
alphabet size 2, to the problem gap-CSG[1, 1 − ε ′] with poly(log log n) queries with alphabet size
poly(log log n), where ε ′ > 0 is an absolute constant depending only on ε and k.

In your answer you should explain how the construction works, and explain how each part of it relates
to things we have seen in class, as well as the necessary modifcations (in high level). You do not have
to give fully detailed proofs, but are encouraged to give a rough overview of how a proof would work.

2

MIT OpenCourseWare
https://ocw.mit.edu

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

