18.408 Topics in Theoretical Computer Science Fall 2022 Problem Set 2

1. In this problem, we will prove a variant of the Schwarz-Zippel Lemma for individual degrees, stating that for $d<q$, if $f: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}$ is a polynomial in which the individual degree of each variable is at most d, the total degree is at most D, and $f \not \equiv 0$, then $\operatorname{Pr}_{x \in \mathbb{F}_{q}^{n}}[f(x) \neq 0] \geqslant\left(1-\frac{d}{q}\right)^{D}$.
(a) Show that the statement holds for $n=1$.
(b) Prove the statement by induction on n.

Low-degree testing

2. In this question, we will consider the Plane versus Line test and analyze its soundness. Suppose that \mathbb{F}_{q} is a field, $A_{2}: S_{2}\left(\mathbb{F}_{q}^{m}\right) \rightarrow\{$ degree d bi-variate polynomials $\}$ is an assignment to all planes, and $A_{1}: S_{1}\left(\mathbb{F}_{q}^{m}\right) \rightarrow\{$ degree d uni-variate polynomials $\}$ is an assignment to all lines such that A_{2}, A_{1} pass the Plane versus Line test with probability at least ε, where $\varepsilon \geqslant \sqrt{\frac{d m}{q}}$.
(a) Show that A_{2} passes the Plane versus Plane test with probability at least ε^{2}.
(b) Deduce the following list-decoding statement: for all $\delta>\frac{d^{10} m^{10}}{q^{1 / 10}}$ there is $k=k(\delta) \in \mathbb{N}$, such that for any A_{1}, A_{2} as above, there are $f_{1}, \ldots, f_{k}: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}$ of degree at most d such that

$$
\operatorname{Pr}_{\substack{\ell \in S_{1}\left(\mathbb{F}_{q}^{m}\right), P \in S_{2}\left(\mathbb{F}_{q}^{m}\right) \\ \ell \subseteq P}}\left[\left.\left.A_{2}[P]\right|_{\ell} \equiv A_{1}[\ell] \wedge \bigwedge_{i=1}^{k} A_{2}[P] \not \equiv f_{j}\right|_{P}\right] \leqslant \delta .
$$

3. In this question, we will design a nearly linear size version of the Plane versus Plane test.

Let $1 \leqslant h<q$ be powers of 2 , consider the field \mathbb{F}_{q} and take a sub-field $\mathbb{H} \subseteq \mathbb{F}_{q}$ of size h. We define the set of planes with directions in \mathbb{H}^{3} as

$$
S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right)=\left\{P=a+\operatorname{Span}_{\mathbb{F}_{q}}(x, y) \quad a \in \mathbb{F}_{q}^{3}, x, y \in \mathbb{H}^{3}\right\} .
$$

We will think of q as very large, and h as much smaller (you should think of $h=q^{0.0001}$, say).
(a) Show that $S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right)=\frac{q^{3}\left(h^{3}-1\right)}{q^{2}(h-1)}$. Thus, the number of planes in $S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right)$ is nearly linear in the number of points in \mathbb{F}_{q}^{3}.
(b) Show that $P_{1}, P_{2} \in S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right)$ are parallel if and only if they can be written as $P_{1}=a+L$, $P_{2}=a^{\prime}+L$ for a linear subspace $L=\operatorname{Span}(x, y)$ where $x, y \in \mathbb{H}^{3}$ and $a \neq a^{\prime}$. Deduce that choosing P_{1}, P_{2} independently, the probability they are parallel is $\frac{h-1}{h^{3}-1}$.
(c) Show that for every line $\ell=a+\operatorname{Span}(x)$ where $x \in \mathbb{H}^{3}$, the probability a random plane $P \in S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right)$ does not intersect ℓ is at most $\frac{1}{h}$.
(d) Given an assignment $B_{2}: S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right) \rightarrow\{$ bi-variate degree d polynomials $\}$, we define the graph $G=(V, E)$ whose vertex set is $V=S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right)$ and $\left(P_{1}, P_{2}\right)$ is an edge if $B_{2}\left[P_{1}\right]$ and $B_{2}\left[P_{2}\right]$ agree on $P_{1} \cap P_{2}$. Show that $\beta(G) \leqslant \frac{1}{h}+\frac{d}{q}$.
4. (Not for submission) Prove the following version of the Plane versus Plane Theorem: suppose that for $B_{2}: S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right) \rightarrow$ bi-variate degree d polynomials $\}$, sampling $P_{1}, P_{2} \in S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right)$ that intersect in a line, we have that $\left.\left.B_{2}\left[P_{1}\right]\right|_{P_{1} \cap P_{2}} \equiv B_{2}\left[P_{2}\right]\right|_{P_{1} \cap P_{2}}$ with probability at least $\varepsilon>100 \sqrt{\frac{1}{h}+\frac{d}{q}}$. Show that there is $f: \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}$ of degree at most d such that

$$
\operatorname{Pr}_{P \in S_{2}\left(\mathbb{F}_{q}^{3}, \mathbb{H}^{3}\right)}\left[\left.f\right|_{P} \equiv B_{2}[P]\right] \geqslant \Omega(\sqrt{\varepsilon}) .
$$

Interactive Protocols

5. An interactive protocol consists of two entities, a verifier V which is a randomized algorithm running in polynomial time, and an all powerful prover P. When ran on an input x known both to V and P, the protocol proceeds by an exchange of messages between V and P, at the end of which V decides whether to accept or reject. We say a language L is in the class IP if there is a protocol (V, P) such that:
(a) For every $x \in L, \operatorname{Pr}[(V, P)$ accepts on $x] \geqslant \frac{2}{3}$.
(b) For every $x \notin L$, and any potential prover $P^{\prime}, \operatorname{Pr}\left[\left(V, P^{\prime}\right)\right.$ accepts on $\left.x\right] \leqslant \frac{1}{3}$.

In words, every input in L is accepted by V with probability at least $2 / 3$, and for any input x outside L, no prover strategy can convince V that x is in the language.
Show that $\mathrm{NP} \subseteq \mathrm{IP}$, and that IP \subseteq PSPACE.
6. (*) Consider the \#3SAT problem, in which the goal the input is a 3 CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)=$ $\bigwedge_{i=1}^{m} C_{i}$ where each clause C_{i} is a conjunction of 3 -literals. The goal is to output the number of satisfying assignments to ϕ. Show that $\# 3 S A T$ is in IP. (hint:

MIT OpenCourseWare
https://ocw.mit.edu

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs

 Fall 2022For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

