18.408 Topics in Theoretical Computer Science Fall 2022 Problem Set 2

- In this problem, we will prove a variant of the Schwarz-Zippel Lemma for individual degrees, stating that for d < q, if f: F^m_q → F_q is a polynomial in which the individual degree of each variable is at most d, the total degree is at most D, and f ≠ 0, then Pr_{x∈Fⁿ_q} [f(x) ≠ 0] ≥ (1 ^d_q)^D.
 - (a) Show that the statement holds for n = 1.
 - (b) Prove the statement by induction on n.

Low-degree testing

- 2. In this question, we will consider the Plane versus Line test and analyze its soundness. Suppose that \mathbb{F}_q is a field, $A_2: S_2(\mathbb{F}_q^m) \to \{ \text{degree } d \text{ bi-variate polynomials} \}$ is an assignment to all planes, and $A_1: S_1(\mathbb{F}_q^m) \to \{ \text{degree } d \text{ uni-variate polynomials} \}$ is an assignment to all lines such that A_2, A_1 pass the Plane versus Line test with probability at least ε , where $\varepsilon \ge \sqrt{\frac{dm}{q}}$.
 - (a) Show that A_2 passes the Plane versus Plane test with probability at least ε^2 .
 - (b) Deduce the following list-decoding statement: for all $\delta > \frac{d^{10}m^{10}}{q^{1/10}}$ there is $k = k(\delta) \in \mathbb{N}$, such that for any A_1, A_2 as above, there are $f_1, \ldots, f_k \colon \mathbb{F}_q^m \to \mathbb{F}_q$ of degree at most d such that

$$\Pr_{\substack{\ell \in S_1(\mathbb{F}_q^m), P \in S_2(\mathbb{F}_q^m)\\ \ell \subseteq P}} \left[A_2[P]|_{\ell} \equiv A_1[\ell] \land \bigwedge_{i=1}^k A_2[P] \neq f_j|_P \right] \leqslant \delta_{\ell}$$

3. In this question, we will design a nearly linear size version of the Plane versus Plane test.

Let $1 \leq h < q$ be powers of 2, consider the field \mathbb{F}_q and take a sub-field $\mathbb{H} \subseteq \mathbb{F}_q$ of size h. We define the set of planes with directions in \mathbb{H}^3 as

$$S_2(\mathbb{F}_q^3, \mathbb{H}^3) = \left\{ P = a + \mathsf{Span}_{\mathbb{F}_q}(x, y) \mid a \in \mathbb{F}_q^3, x, y \in \mathbb{H}^3 \right\}.$$

We will think of q as very large, and h as much smaller (you should think of $h = q^{0.0001}$, say).

- (a) Show that $S_2(\mathbb{F}_q^3, \mathbb{H}^3) = \frac{q^3(h^3-1)}{q^2(h-1)}$. Thus, the number of planes in $S_2(\mathbb{F}_q^3, \mathbb{H}^3)$ is nearly linear in the number of points in \mathbb{F}_q^3 .
- (b) Show that P₁, P₂ ∈ S₂(𝔽³_q, 𝞞³) are parallel if and only if they can be written as P₁ = a + L, P₂ = a' + L for a linear subspace L = Span(x, y) where x, y ∈ 𝞞³ and a ≠ a'. Deduce that choosing P₁, P₂ independently, the probability they are parallel is ^{h-1}/_{h³-1}.

- (c) Show that for every line $\ell = a + \text{Span}(x)$ where $x \in \mathbb{H}^3$, the probability a random plane $P \in S_2(\mathbb{F}^3_q, \mathbb{H}^3)$ does not intersect ℓ is at most $\frac{1}{h}$.
- (d) Given an assignment $B_2: S_2(\mathbb{F}_q^3, \mathbb{H}^3) \to \{\text{bi-variate degree d polynomials}\}, \text{ we define the graph} G = (V, E)$ whose vertex set is $V = S_2(\mathbb{F}_q^3, \mathbb{H}^3)$ and (P_1, P_2) is an edge if $B_2[P_1]$ and $B_2[P_2]$ agree on $P_1 \cap P_2$. Show that $\beta(G) \leq \frac{1}{h} + \frac{d}{q}$.
- 4. (Not for submission) Prove the following version of the Plane versus Plane Theorem: suppose that for B₂: S₂(𝔽³_q, 𝞞³) → {bi-variate degree d polynomials}, sampling P₁, P₂ ∈ S₂(𝔽³_q, 𝞞³) that intersect in a line, we have that B₂[P₁]|_{P1∩P2} ≡ B₂[P₂]|_{P1∩P2} with probability at least ε > 100√(1/h) + (d/q). Show that there is f: 𝔽³_q → 𝔽_q of degree at most d such that

$$\Pr_{P \in S_2(\mathbb{F}_q^3, \mathbb{H}^3)} \left[f |_P \equiv B_2[P] \right] \ge \Omega(\sqrt{\varepsilon}).$$

Interactive Protocols

- 5. An interactive protocol consists of two entities, a verifier V which is a randomized algorithm running in polynomial time, and an all powerful prover P. When ran on an input x known both to V and P, the protocol proceeds by an exchange of messages between V and P, at the end of which V decides whether to accept or reject. We say a language L is in the class IP if there is a protocol (V, P) such that:
 - (a) For every $x \in L$, $\Pr[(V, P) \text{ accepts on } x] \ge \frac{2}{3}$.
 - (b) For every $x \notin L$, and any potential prover P', $\Pr[(V, P') \text{ accepts on } x] \leq \frac{1}{3}$.

In words, every input in L is accepted by V with probability at least 2/3, and for any input x outside L, no prover strategy can convince V that x is in the language.

Show that NP \subseteq IP, and that IP \subseteq PSPACE.

6. (*) Consider the #3SAT problem, in which the goal the input is a 3CNF formula $\phi(x_1, \ldots, x_n) = \bigwedge_{i=1}^{m} C_i$ where each clause C_i is a conjunction of 3-literals. The goal is to output the number of satisfying assignments to ϕ . Show that #3SAT is in IP. (hint:

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs Fall 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.